Разделы

Авто
Бизнес
Болезни
Дом
Защита
Здоровье
Интернет
Компьютеры
Медицина
Науки
Обучение
Общество
Питание
Политика
Производство
Промышленность
Спорт
Техника
Экономика

Идеальные модели

a) неформализованные модели, т.е. системы представлений об объекте оригинале, сложившиеся в человеческом мозгу;

b) частично формализованные:

вербальные – описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента);

графические иконические – черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты);

графические условные – данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем;

c) вполне формализованные (математические) модели.

Основное отличие этого типа моделей от остальных состоит в вариативности — в кодировании одним знаковым описанием огромного количества конкретных вариантов поведения системы. Tак, линейные дифференциальные уравнения с постоянными коэффициентами описывают и движение массы на пружине, и изменение тока в колебательном контуре, и измерительную схему системы автоматического регулирования, и ряд других процессов. Однако еще более важно то, что в каждом из этих описаний одни и те же уравнения в буквенном (а вообще говоря, и в числовом) виде соответствуют бесконечному числу комбинаций конкретных значений параметров. Скажем, для процесса механических колебаний — это любые значения массы и жесткости пружины.

В знаковых моделях возможен дедуктивный вывод свойств, количество следствий в них обычно более значительно, чем в моделях других типов. Они отличаются компактной записью удобством работы, возможностью изучения в форме, абстрагированной от конкретного содержания. Все это позволяет считать знаковые модели наивысшей ступенью и рекомендовать стремиться к такой форме моделирования.

Заметим, что деление моделей на вербальные, натурные и знаковые в определенной степени условно. Так, существуют смешанные типы моделей, скажем, использующие и вербальные, и знаковые построения.

Введем «прагматическое» определение математической модели, удобное для практических приложений. Для этого используем хорошо известное из кибернетики представление объекта в виде «черного ящика».

Первым шагом к осознанному построению модели во всех случаях является уяснение и четкая формулировка исследования или иной задачи, ради решения которой осуществляется моделирование. Этот шаг базируется на содержательном анализе исходной проблемы, предполагает сбор и осмысление всех уже имеющихся данных, относящихся к задаче. Следующий шаг, с которого начинается процедура собственно моделирования, заключается в определении границ объекта, подлежащего модельному описанию и исследованию с целью решения задачи. Здесь возможен очень широкий диапазон различных ситуаций (зависит от характера задачи, степени сложности и изученности). Будем считать, что в соответствии с имеющейся информацией мы приняли некоторую гипотезу о границах объекта, подлежащего модельному исследованию. Исходя из принципа всеобщей взаимосвязи и взаимозависимости, можно утверждать, что в общем случае выявленный объект, с одной стороны, подвергается воздействиям со стороны окружающей среды, с другой – сам воздействует на эту среду, изменяя её состояние. Связи среда – объект будем именовать, как это принято, входными воздействиями или входами Х (часто вводят разделение входных воздействий на управления (U) и возмущения (V)), а воздействия объект – среда (Y) – выходными.

Очевидно, что достаточно полный (с точки зрения решаемой задачи) учет входных и выходных связей объекта с более широкой системой (средой), компонентом которой он является, есть необходимое условие правомерности выделения объекта из среды. Каждая упущенная исследованием существенная связь создает угрозу того, что состояние и свойства выявленного объекта уже не будут соответствовать тем, которые имели место в исходной реальной системе и модель, базирующаяся на подобном представлении, окажется заведомо неадекватной. С другой стороны, по практическим соображениям в модели желательно учитывать возможно меньшее число факторов, ибо её сложность и громоздкость являются не менее серьезными недостатками, чем неполнота. Разрешение данного противоречия, т.е. выбор подлежащих учету в модели существенных входных и выходных воздействий и абстрагирование от прочих, предположительно незначимых, представляет собой весьма ответственный момент при построении любой модели, т.к. решающим образом влияет на её качество и эффективность. Здесь необходимо глубокое понимание существа решаемой задачи, тщательное изучение воспроизводимой в модели исходной реальной системы, необходим опыт и эвристические способности. Если моделируемый объект представляет собой реально существующую материальную систему, его связями, очевидно, являются также вполне реальные материальные факторы: силы различной природы, пространственные перемещения с их производными, потоки вещества, потоки энергии, а в некоторых случаях потоки информации. Все они должны быть исследованы и описаны в качественном и количественном отношении, оценены посредством «числа и меры», после чего превращаются в информационные конструкты и приобретают статус переменных модели.

Использование математической модели в современном смысле слова не связано с материальным воспроизведением подлежащих исследованию свойств и характеристик объекта и не предполагает экспериментальных процедур. Объект, описанный на языке математики, представляется некоторой математической структурой (дифференциальными или конечно-разностными уравнениями, передаточной функцией, графом и т.п.) с определенными параметрами, а процесс исследования (так называемое решение математической модели) заключается в применении к этой структуре совокупности математических преобразований и операций в соответствии с некоторым алгоритмом. Результатом вычислительного процесса является новая информация об объекте, разумеется, в той части его свойств, которые нашли отражение в исходном математическом описании. Возможности современных ЭВМ и программных средств позволяют исследовать эти свойства при всевозможных вариациях параметров, входящих в исходную модель, определять присущие ей вероятностно-статистические характеристики, находить значения параметров, оптимальных по тому или иному критерию и решать множество других самых разнообразных задач.

Под словами “модельное описание” или “модель” понимается мате­матически формализованное описание некоторого явления или объекта в терминах определенной группы его характеристик. Математическая модель сложных управляемых процессов содержит очень много величин различной природы. Все эти величины естественным образом можно разделить на три группы:

• к первой группе относятся величины, которые принято называть эн­догенными (внутренними), или фазовыми; они являются искомыми величинами, т. е. подлежат определению, вычислению в силу связей модели;

• ко второй группе относятся так называемые экзогенные (внешние) величины, они полагаются известными в рамках данной модели;

• к третьей группе относятся управления — величины, находящие­ся в распоряжении органов управления, с помощью которых можно оказать влияние на течение процесса.

Само слово “модель” означает совокупность связей между всеми эти­ми величинами. Если эта совокупность связей позволяет определить на данном отрезке времени все эндогенные величины при условии, что на нем заданы управления, экзогенные величины, а также начальные для этого отрезка (и, возможно, граничные – в пространственном смысле) значения фазовых переменных, то модель называется замкнутой.

Разделение на внешние и внутренние величины можно выполнить не единственным образом, оно является в известной мере условным и связано со способом использования модели и целями моделирования.


Классификация математических моделей

обобщенного объекта моделирования

 

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: X Z Y.

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта – вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b).

Первое свойство непрерывность и дискретность. Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Дифференциальные уравнения как инструмент модельного описания физических и технических объектов настолько широко распространены в приложениях, что некоторые специалисты, главным образом инженеры, только их и рассматривают, как полноценные модели. Это неправильно. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Непрерывность или дискретность. Это свойство выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z,Y, Т, Х ведет к модели, называемой дискретной, а их непрерывность — к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего — замена непрерывной математической функции на набор ее значений в фиксированных точках.

Следующее свойство модели — детерминированность или стохастичность. Если в модели среди величин имеются случайные, т. е. определяемые лишь некоторыми вероятностными характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы.

Здесь подчеркнем, что с точки зрения практики граница между детерминированными и стохастическими моделями выглядит расплывчатой. Так, в технике про любой размер или массу можно сказать, что это не точное значение, а усредненная величина типа математического ожидания, в связи с чем и результаты вычислений будут представлять собой лишь математические ожидания исследуемых величин. Однако такой взгляд представляется крайним. Удобный практический прием состоит в том, что при малых отклонениях от фиксированных значений модель считается детерминированной, а отклонение результата исследуется методами оценок или анализа ее чувствительности. При значительных же отклонениях применяется методика стохастического исследования.

Свойствасосредоточенности или распределенности характеризуют объекты с точки зрения роли, которую играет в их модельном описании пространственная протяженность (на фоне скорости распространения физических процессов). Если пространственной протяженностью объекта можно пренебречь и считать, что независимой переменной является только время (протекающих в нем процессов), принято говорить об объекте с сосредоточенными параметрами. К числу таких объектов, которые описываются (в случае детерминированности и непрерывности) обыкновенными дифференциальными уравнениями, относится подавляющее большинство механизмов, машин и вообще локальных технических устройств (расстояния между компонентами практически не влияют на исследуемые свойства и характеристики). В пространственно протяженных объектах адекватное описание требует учета не только времени, но и пространственных координат. В таком случае говорят о классе объектов с распределенными параметрами. Примеры: всевозможные «длинные линии» - проводная линия связи, описываемая так называемым телеграфным уравнением, длинные трубопроводы, технологические линии в непрерывном пространстве. Электромагнитное поле с его обобщенной математической моделью – уравнениями Максвелла – представляет собой классический пример трехмерного объекта с распределенными параметрами. Непрерывные и детерминированные объекты с распределенными параметрами описываются дифференциальными уравнениями в частных производных.

Статические и динамические модели. Статические модели относятся к объектам, практически неизменяющимся во времени или рассматриваемым в отдельные временные сечения. Динамические модели воспроизводят изменения состояний («движение») объекта с учетом как внешних, так и внутренних факторов.

Для динамических моделей часто вводят понятия стационарность и нестационарность. Чаще всего стационарность выражается в неизменности во времени некоторых физических величин: стационарным является поток жидкости с постоянной скоростью, стационарна механическая система, в которой силы зависят только от координат и не зависят от времени.

Под стационарным объектом, в более общем смысле, подразумевают неизменность структуры и параметров объекта. Поэтому он описывается выражением, которое включает в себе только постоянные коэффициенты. Нестационарность может иметь место относительно параметров, относительно структуры и одновременно. Чаще имеет место нестационарность относительно параметров, т.е. рассматривается объект с переменными коэффициентами, что усложняет исследование. Общей теории и специального математического аппарата для описания существенно нестационарных объектов переменной структуры еще не существует. Исследование таких объектов проводится на основе некоторых методов прикладного системного анализа, которые сочетают формализованные математические процедуры с эвристикой и здравым смыслом, а также широко используют прием декомпозиции и последующего объединения частных решений.

С точки зрения общности методов анализа, возможностей математического аппарата и трудоемкости исследования чрезвычайно существенно деление объектов на линейные и нелинейные. Для первых справедлив принцип суперпозиций, когда каждый из выходов объекта характеризуется некоторой линейной формулой, связывающих его со значениями соответственных входных переменных. С точки зрения математического аппарата линейность объекта относительно переменных означает, что среди коэффициентов, входящих в его математическое описание, отсутствуют величины, зависящие от переменных, их производных и интегралов. Если коэффициенты не зависят и от времени, то это самый благоприятный и наиболее распространенный в технических приложениях случай: описание объекта в классе линейных стационарных моделей.

Линейность (нелинейность) обычно расшифровывается как линейная (нелинейная) зависимость от входов операторов состояний или выходов. Линейность может являться как естественным, хорошо соответствующим природе, так и искусственным (вводимым для целей упрощения) свойством модели.


Дата публикации:2014-01-23

Просмотров:522

Вернуться в оглавление:

Комментария пока нет...


Имя* (по-русски):
Почта* (e-mail):Не публикуется
Ответить (до 1000 символов):







 

2012-2018 lekcion.ru. За поставленную ссылку спасибо.