Разделы

Авто
Бизнес
Болезни
Дом
Защита
Здоровье
Интернет
Компьютеры
Медицина
Науки
Обучение
Общество
Питание
Политика
Производство
Промышленность
Спорт
Техника
Экономика

Расчет марковской цепи с дискретным временем

Пусть имеется физическая система S с дискретными состояниями S1, S2, … Sn и дискретным временем t1, t2, … , tk, … (шаги, этапы процесса, СП можно рассматривать как функцию аргумента (номера шага)). В общем случае СП состоит в том, что происходят переходы S S1 ® S S S S в моменты t1, t2, t3.

Будем обозначать событие, состоящее в том, что после k – шагов система находится в состоянии Si. При любом k события образуют полную группу и несовместны. СП, происходящий в системе, можно представить как последовательность событий .

Такая случайная последовательность событий называется марковской цепью. Будем описывать марковскую цепь (МЦ) с помощью вероятностей состояний. Пусть – вероятность того, что после k - шагов система находится в состоянии Si. Легко видеть, что "k. Поставим задачу: найти вероятности состояний системы для любого k.

Для любого шага (момента времени t1, t2, … , tk) существуют какие-то вероятности перехода системы из любого состояния в любое другое (некоторые из них равны нулю, если непосредственный переход за один шаг невозможен), а также вероятности задержки системы в одном состоянии. Будем их называть переходными вероятностями МЦ. Марковская цепь называется однородной, если переходные вероятности не зависят от номера шага, в противном случае - неоднородная МЦ. Рассмотрим однородную МЦ.

Пусть S= S1, S2, … Sn. Обозначим переходные вероятности через Pij. Пусть известна матрица

.

Пользуюсь введенными выше событиями , переходные вероятности можно написать как условные вероятности:. Сумма членов в каждой строке матрицы должна быть равна 1. Вместо матрицы переходных вероятностей часто используют размеченный граф состояний (обозначают на дугах ненулевые вероятности переходов, вероятности задержки не требуются, поскольку они легко вычисляются, например P11=1-(P12+P13)). Имея в распоряжении размеченный граф состояний (или матрицу переходных вероятностей) и зная начальное состояние системы, можно найти вероятности состояний p1(k),p2(k),…pn(k) "k.

Пусть начальное состояние системы Sm, тогда

p1(0)=0 p2(0)=0… pm(0)=1… pn(0)=0.

Первый шаг:

p1(1)=Pm1, p2(1)=Pm2,…pm(1)=Pmm,… ,pn(1)=Pmn.

После второго шага по формуле полной вероятности получим:

p1(2)=p1(1)P11+p2(1)P21+…pn(1)Pn1,

pi(2)=p1(1)P1i+p2(1)P2i+…pn(1)Pni или .

Для произвольного шага k получаем:

(i=1,2,..n).

Для неоднородной МЦ переходные вероятности зависят от номера шага. Обозначим переходные вероятности для шага k через.

Тогда формула для расчета вероятностей состояний приобретает вид:

.

Дата публикации:2014-01-23

Просмотров:475

Вернуться в оглавление:

Комментария пока нет...


Имя* (по-русски):
Почта* (e-mail):Не публикуется
Ответить (до 1000 символов):







 

2012-2018 lekcion.ru. За поставленную ссылку спасибо.