Вольфрам химические свойства. Вольфрам - что за металл? Свойства и сферы применения. Другие сферы применения

При комнатной температуре вольфрам стоек к атмосферной коррозии, но при нагреве уже до 750 К окисляется до WO 3 , реагирует с галогенами: с фтором – при комнатной температуре, а йодом при температуре около 900 К.

При нагреве высоких температур он реагирует с углеродом, кремнием и бором, образуя соответственно карбиды,силициды,бориды. Сера и фосфор в обычных условий на вольфрам не действуют. На воздухе растворяется в горячих водных растворах щелочей, но слабо поддается действию кислот, кроме плавиковой и азотной при нагреве.

Водород и азот не дают химических соединений с вольфрамом,в плоть до

3000 0 С, хотя в некоторых источниках имеются указания на возможность образования гидрида WH 2 .

Cкислородом вольфрам образует три устойчивых оксида:

WO 2 – бурового цвета;

WO 3 – желтого цвета;

W 2 O 5 – синеватого цвета.

Все эти оксиды образуются при температуре около 800 К на воздухе или в кислороде, причем все они очень летучи, имеют невысокую температуру плавления. Например, WO 3 плавится при температуре 1645 К.

На практике, чтобы отличить вольфрамовую проволоку, от молибденовой пользуются простым приемом: кончик проволоки поджигают спичкой. Если при этом наблюдается желтый или бурый дымок, значит, это проволока вольфрамовая, если белый – молибденовая.

Углерод восстанавливает оксиды W:

При температуре 825 К;

При температуре 1325 К;

При температуре 1425 К.

С азотом вольфрам образует нитриды при температурах более 1600 К, но выше отметки 2275 К они разлагаются.

При взаимодействии с углеродом и температурах выше 1800 К вольфрам образует карбиды W 2 CиWC. ПлотностьW 2 C – 16000 кг/м 3 , WC– 9000 кг/м 3 , твердость около 9 единиц по Мосу. При температуре 2875 К кабрид WC разлагается по реакции

На рис.73 приведена диаграмма состояния W–C.

Как видно из диаграммы, карбиды вольфрама имеют температуру плавления значительно ниже таковой для самого металла. Так, WC плавится при температуре около 2875 К, W 2 C – 3065 К. Кроме того, карбиды могут образовывать с вольфрамом эвтектические сплавы с температурой плавления значительно низшей чем у металла, который плавится при 3683 К. Поэтому нужно обратить внимание ракетчиков на опасность реакции образования карбидов на границе графит – вольфрам, которая имеет место при нагреве выше 2675 К. Предупреждение связано с тем, что в конструкции вкладыша критического сечения сопла твердотопливного двигателя сочетаются вольфрамовая внутренняя облицовка с графитовой обоймой.

Во избежание приведенной реакции между вольфрамовой облицовкой и графитом обоймы наносится так называемый «барьерный» слой из карбида тантала или титана (ТаС, TiC).

В связи с высокой плотностью вольфрама и его дефицитностью конструкторы и технологи стремятся заменить его на более легкие и менее дефицитные материалы, о чем будет сказано далее.


Рис. 73. Диаграмма состояния W-C

Рис. 74. Схема массопереноса в лампе

накаливания: 1 –стенка колбы, где образуется WJ 2 ; 2 –спираль, где WJ 2 разлагается на W и J


Хотя реакция вольфрама с йодом не имеет отношения к ракетной технике, все же на ней хотелось бы коротко остановиться.

При температуре выше 850 К вольфрам с парами йода образует иодид, который представляет собой легко сублимирующую соль йодидной кислоты:

При температуре2475 К йодид разлагается:

Эти две реакции используются для переноса вольфрама, например, в лампах накаливания: несмотря на низкую упругость паров в них вольфрам все же испаряется в вакууме. Пары его садятся на стенки стеклянной колбы лампы и прозрачность ее уменьшается. Если колбу заполнить парами йода, то последний станет реагировать с вольфрамом на горячей стенке лампы и образует WJ 2 , который за счет диффузии попадает на нагретую вольфрамовую спираль и разложится. Свободный йод снова переместиться к стенке, а вольфрамостанется на спирали, и так без конца. В конечном результате повышается светимость и долговечность йодозаполненных ламп.

Эта же реакция используется в технике для получения чистых тугоплавких металлов: вольфрама, тантала, молибдена, гафния и др.

Эту реакцию можно использовать и для получения тонких оболочек из вольфрама. Кроме йодидного метода для этой цели можно использовать карбонильный, т.е. разложение WCO 2 . В реактивных топливныхдвигателях вольфрам в чистом виде, как правило, не применяется ввиду низкой термической стойкости, а применяется в виде так называемых псевдосплавов с медью. Об этом будет сказано ниже.

В ядерной технике вольфрам может применяться в качестве плакирующего слоя ТВЭЛов на основе UC–ZrC повышения их прочности, уменьшения испарения и распухания. Он может входить в состав металлокерамических элементов типа

W - UC или W – UO 2 и т.п. Такие ТВЭлы могут работать при температуре до 2000 К, так как вольфрам, несмотря на многие недостатки, является жаропрочным металлом, медленно испаряется и защищает от осколков деления и излучений. В разделе «Углеродные материалы» вольфрам рассматривается, как армирующий материал в углеметаллопластиках, которые применяются для изготовления узлов и деталей РДТТ, работающих в жестких условиях высоких температур и высокоскоростных газовых потоков.

Одним из самых распространенных химических элементов является вольфрам. Он обозначается символом W и имеет атомный номер - 74. Вольфрам относится к группе металлов, имеющих высокую стойкость к изнашиванию и температуру плавления. В периодической системе Менделеева он находится в 6-й группе, обладает схожими свойствами с «соседями» - молибденом, хромом.

Открытие и история

Еще в XVI веке был известен такой минерал, как вольфрамит. Он был интересен тем, что при выплавке олова из руды его пена превращался в шлак и, конечно же, это мешало производству. С тех пор, вольфрамит стали называть "волчья пена" (с нем. Wolf Rahm). Название минерала перешло и на сам металл.

Шведский химик Шееле в 1781 году обрабатывал азотной кислотой металл шеелит. В процессе эксперимента у него получился жёлтый тяжёлый камень - оксид вольфрама (VI). Через два года братья Элюар (испанские химики) получили из саксонского минерала сам вольфрам в чистом виде.

Добывают этот элемент и его руды в Португалии, Боливии, Южной Корее, России, Узбекистане, а наибольшие запасы были найдены в Канаде, США, Казахстане и Китае. В год добывается всего 50 тонн этого элемента, поэтому он дорого стоит. Рассмотрим подробнее, что за металл вольфрам.

Свойства элемента

Как уже было сказано ранее, вольфрам - это один из самых тугоплавких металлов. Он имеет блестящий светло-серый цвет. Его температура плавления 3422°С, а кипения - 5555°C, плотность в чистом виде - 19,25 г/см 3 , а твердость 488 кг/мм². Это один из самых тяжелых металлов, обладающий высокой коррозионной стойкостью. Он практически не растворим в серной, соляной и плавиковой кислотах, но быстро вступает в реакцию с перекисью водорода. Что за металл вольфрам, если он не реагирует с расплавленными щелочами? Вступая в реакцию с гидроксидом натрия и кислородом, он образует два соединения - вольфрамат натрия и обычную воду Н 2 О. Интересно, что при повышении температуры вольфрам саморазогревается, тогда процесс происходит намного активнее.

Получение вольфрама

На вопрос о том, к какой группе металлов относится вольфрам, можно ответить, что он входит в категорию редких элементов, как рубидий и молибден. А это, в свою очередь, означает, что для него характерны небольшие масштабы производства. Кроме того, такой металл не получают восстановлением из сырья, сначала он перерабатывается на химические соединения. Как же происходит получение редкого металла?

  1. Из рудного материала выделяют необходимый элемент и концентрируют его в растворе или осадке.
  2. Следующим шагом, получают чистое химическое соединение путем очистки.
  3. Из полученного вещества выделяют чистый редкий металл - вольфрам.

Для обогащения руды используют гравитацию, флотацию, магнитную или электростатическую сепарацию. В результате получают концентрат, который содержит 55-65% ангидрида вольфрама WO 3 . Для получения порошка его восстанавливают при помощи водорода или углерода. Для некоторых изделий, на этом процесс получения элемента заканчивается. Так, вольфрамовый порошок используют для приготовления твердых сплавов.

Изготовление штабиков

Мы уже выяснили, что за металл вольфрам, а теперь узнаем, в каком сортаменте он изготавливается. Из порошкового соединения изготавливают компактные слитки - штабики. Для этого используют только порошок, который был восстановлен водородом. Их изготавливают путем прессования и спекания. Получаются довольно прочные, но хрупкие слитки. Иными словами, они плохо поддаются ковке. Для улучшения этого технологического свойства, штабики подвергают высокотемпературной обработке. Из этого изделия изготавливают другой сортамент.

Вольфрамовые прутки

Конечно же, это один из самых распространенных видов продукции из этого металла. Что за вольфрам используется для их изготовления? Это вышеописанные штабики, которые подвергаются ковке на ротационной ковочной машине. Важно отметить, что процесс происходит в нагретом состоянии (1450-1500°С). Полученные прутки применяют в самых различных отраслях промышленности. Например, для изготовления сварочных электродов. Кроме того, вольфрамовые прутки нашли широкое применение в нагревателях. Они работают в печах при температуре до 3000 °С в вакууме, инертном газе или водороде. Прутки также могут быть использованы как катоды электронных и газоразрядных приборов, радиоламп.

Интересно, что сами по себе электроды являются неплавящимися, и поэтому во время сварки, необходима подача присадочного материала (проволока, прут). При расплавлении со свариваемым материалом он создает сварочную ванну. Данные электроды, как правило, применяются для сварки цветных металлов.

Вольфрам и проволока

Вот еще один вид широко распространённой продукции. Вольфрамовая проволока изготавливается из кованых прутков, рассмотренных нами ранее. Волочение производится с постепенным снижением температуры от 1000°С до 400°С. Затем проводят очистку изделия путем отжига, электролитической полировкой или электролитическим травлением. Поскольку вольфрам - тугоплавкий металл, проволока используется в элементах сопротивления в нагревательных печах при температурах до 3000°С. Из нее изготавливают термоэлектрические преобразователи, а также спирали ламп накаливания, петлевые подогреватели и многое другое.

Соединения вольфрама с углеродом

Карбиды вольфрама считаются очень важными с практической точки зрения. Они применяются для изготовления твердых сплавов. Соединения с углеродом имеют положительный коэффициент электросопротивления и хорошую проводимость металла. Карбиды вольфрама образуются двух видов: WC и W 2 C. Они различаются своим поведениям в кислотах, а также растворимостью в других соединениях с углеродом.

На основе вольфрамовых карбидов изготавливают два типа твердых сплавов: спеченные и литые. Последние получают из порошкообразного соединения и карбида с недостатком С (менее 3%) путем литья. Второй тип изготавливают из монокарбида вольфрама WC и цементирующего металла-связки, которым может выступать никель или кобальт. Спеченные сплавы получают только методом порошковой металлургии. Порошок цементирующего металла и карбид вольфрама смешивают, прессуют и спекают. Такие сплавы обладают высокой прочностью, твёрдостью износоустойчивостью.

В современной металлургической промышленности их используют для обработки металлов резанием и для изготовления бурового инструмента. Одним из самых распространённых сплавов являются ВК6 и ВК8. Их применяют для изготовления фрез, резцов, сверл и другого режущего инструмента.

Область применения карбидов вольфрама достаточно объёмная. Так, их используют для изготовления:

  • бронебойных припасов;
  • деталей двигателей, самолетов, космических кораблей и ракет;
  • оборудования в атомной промышленности;
  • хирургических инструментов.

На Западе особенно широко применяются карбиды вольфрама в ювелирных изделиях, в особенности, для изготовления свадебных колец. Металл смотрится красиво, эстетично, его легко обрабатывать.

Это объясняется тем, что они невероятно износоустойчивы. Чтобы поцарапать такое изделие, придется приложить немало усилий. Даже через несколько лет, кольцо будет выглядеть как новое. Оно не потускнеет, не повредится рельефный узор, да и полированная часть не потеряет своего блеска.

Вольфрам и рений

Сплав этих двух элементов довольно широко применяется для изготовления высокотемпературных термопар. Вольфрам - какой металл? Как и рений, это жаропрочный металл, а легирование элементов снижает это свойство. Но что, если взять два практически одинаковых вещества? Тогда температура их плавления снижаться не будет.

Если использовать рений в качестве присадки, будет наблюдаться повышение жаропрочности и пластичности вольфрама. Данный сплав получают методом плавки в порошковой металлургии. Термопары, изготавливаемые из этих материалов, являются жаропрочными и могут измерять температуру больше 2000°С, но только в инертной среде. Конечно же, подобные изделия стоят дорого, ведь в один год добывается всего 40 тонн рения и только 51 тонна вольфрама.

ОПРЕДЕЛЕНИЕ

Вольфрам - семьдесят четвертый элемент Периодической таблицы. Обозначение - W от латинского «wolframium». Расположен в шестом периоде, VIB группе. Относится к металлам. Заряд ядра равен 74.

По распространенности в земной коре вольфрам уступает хрому, но превосходит молибден. Природные соединения вольфрама в большинстве случаев представляют собой вольфраматы - соли вольфрамовой кислоты H 2 WO 4 . Так, важнейшая вольфрамовая руда - вольфрамит - состоит из вольфраматов железа и марганца. Часто встречается также минерал шеелит CaWO 4 .

Вольфрам - тяжелый белый металл (рис. 1) плотностью 19,3 г/см 3 . Его температура плавления (около 3400 o С), выше, чем температура плавления всех других металлов. Вольфрам можно сваривать и вытягивать в тонкие нити.

Рис. 1. Вольфрам. Внешний вид.

Атомная и молекулярная масса вольфрама

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии вольфрам существует в виде одноатомных молекул W, значения его атомной и молекулярной масс совпадают. Они равны 183,84.

Изотопы вольфрама

Известно, что в природе вольфрам может находиться в виде пяти стабильных изотопов 180 W, 182 W, 183 W, 184 W и 186 W.Их массовые числа равны 180, 182, 183, 184 и 186 соответственно. Ядро атома изотопа вольфрама 180 W содержит семьдесят четыре протона и сто шесть нейтронов, а остальные отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы вольфрама с массовыми числами от 158-ми до 192-х, а также одиннадцать изомерных состояния ядер.

Ионы вольфрама

На внешнем энергетическом уровне атома вольфрама имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5р 6 5d 4 6s 2 .

В результате химического взаимодействия вольфрам отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

W o -2e → W 2+ ;

W o -3e → W 3+ ;

W o -4e → W 4+ ;

W o -5e → W 5+ ;

W o -6e → W 6+ .

Молекула и атом вольфрама

В свободном состоянии вольфрам существует в виде одноатомных молекул W. Приведем некоторые свойства, характеризующие атом и молекулу вольфрама:

Сплавы вольфрама

Большая часть добываемого вольфрама расходуется в металлургии для приготовления специальных сталей и сплавов. Быстрорежущая инструментальная сталь содержит до 20% вольфрама и обладает способностью самозакаливаться. Такая сталь не теряет своей твердости даже при нагревании докрасна.

Кроме быстрорежущих широко применяются другие вольфрамовые и хромовольфрамовые стали. Например, сталь, содержащая от 1 до 6% вольфрама и до 2% хрома, применяется для изготовления пил, фрез, штампов.

Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом и хромом - стеллиты - обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью сочетают в себе высокие электрическую проводимость, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки.

Примеры решения задач

ПРИМЕР 1

Вольфрам (лат. Wolframium), W, химический элемент VI группы периодической системы Менделеева, порядковый номер 74, атомная масса 183,85; тугоплавкий тяжелый металл светло-серого цвета. Природный Вольфрам состоит из смеси пяти стабильных изотопов с массовыми числами 180, 182, 183, 184 и 186. Вольфрам был открыт и выделен в виде вольфрамового ангидрида WO 3 в 1781 году шведским химиком К. Шееле из минерала тунгстена, позднее названного шеелитом. В 1783 году испанские химики братья д"Элуяр выделили WO 3 из минерала вольфрамита и, восстановив WO 3 углеродом, впервые получили сам металл, названный ими Вольфрамом. Минерал же вольфрамит был известен еще Агриколе (16 век) и называется у него "Spuma lupi" - волчья пена (нем. Wolf - волк, Rahm - пена) в связи с тем, что Вольфрам, всегда сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков ("пожирает олово как волк овцу"). В США и некоторых других странах элемент назывался также "тунгстен" (по-шведски - тяжелый камень). Вольфрам долго не находил промышленного применения. Лишь во второй половине 19 века начали изучать влияние добавок Вольфрам на свойства стали.

Вольфрам мало распространен в природе; его содержание в земной коре 1·10 -4 % по массе. В свободном состоянии не встречается, образует собственные минералы, главным образом вольфраматы, из которых промышленное значение имеют вольфрамит (Fe, Mn)WO 4 и шеелит CaWO 4 .

Физические свойства Вольфрама. Вольфрам кристаллизуется в объемноцентрированной кубической решетке с периодом а =3,1647Å; плотность 19,3 г/см 3 , t пл 3410°C, t кип 5900°С. Теплопроводность (кал/см·сек·°С) 0,31 (20°С); 0,26 (1300°С). Удельное электросопротивление (ом·см·10 -6) 5,5 (20°С); 90,4 (2700°С). Работа выхода электронов 7,21·10 -19 дж (4,55 эв), мощность энергии излучения при высоких температурах (вт/см 2): 18,0 (1000°С); 64,0 (2200°С); 153,0 (2700°С); 255,0 (3030°С). Механические свойства Вольфрама зависят от предшествующей обработки. Предел прочности при растяжении (кгс/мм 2) для спеченного слитка 11, для обработанного давлением от 100 до 430; модуль упругости (кгс/мм 1) 35000-38000 для проволоки и 39000-41000 для монокристаллической нити; твердость по Бринеллю (кгс/мм 2) для спеченного слитка 200-230, для кованного слитка 350-400 (1 кгс/мм 2 = 10 Мн/м 2). При комнатной температуре Вольфрам малопластичен.

Химические свойства Вольфрама. В обычных условиях Вольфрам химически стоек. При 400-500°С компактный металл заметно окисляется на воздухе до WO 3 . Пары воды интенсивно окисляют его выше 600°С до WO 3 . Галогены, сера, углерод, кремний, бор взаимодействуют с Вольфрамом при высоких температурах (фтор с порошкообразным Вольфрамом - при комнатной). С водородом Вольфрам не реагирует вплоть до температуры плавления; с азотом выше 1500°С образует нитрид. При обычных условиях Вольфрам стоек к соляной, серной, азотной и плавиковой кислотам, а также к царской водке; при 100°С слабо взаимодействует с ними; быстро растворяется в смеси плавиковой и азотной кислот. В растворах щелочей при нагревании Вольфрам растворяется слегка, а в расплавленных щелочах при доступе воздуха или в присутствии окислителей - быстро; при этом образуются вольфраматы. В соединениях Вольфрам проявляет валентность от 2 до 6, наиболее устойчивы соединения высшей валентности.

Вольфрам образует четыре оксида: высший - WO 3 (вольфрамовый ангидрид), низший - WO 2 и два промежуточных W 10 О 29 и W 4 O 11 . Вольфрамовый ангидрид - кристаллический порошок лимонно-желтого цвета, растворяющийся в растворах щелочей с образованием вольфраматов. При его восстановлении водородом последовательно образуются низшие оксиды и Вольфрам. Вольфрамовому ангидриду соответствует вольфрамовая кислота H 2 WO 4 - желтый порошок, практически не растворимый в воде и в кислотах. При ее взаимодействии с растворами щелочей и аммиака образуются растворы вольфраматов. При 188°С Н 2 WО 4 отщепляет воду с образованием WO 3 . С хлором Вольфрам образует ряд хлоридов и оксихлоридов. Наиболее важные из них: WCl 6 (t пл 275°С, t кип 348°C) и WO 2 Cl 2 (t пл 266°С, выше 300°С сублимирует), получаются при действии хлора на вольфрамовый ангидрид в присутствии угля. С серой Вольфрам образует два сульфида WS 2 и WS 3 . Карбиды вольфрама WC (t пл 2900°C) и W 2 C (t пл 2750°С) - твердые тугоплавкие соединения; получаются при взаимодействии Вольфрама с углеродом при 1000-1500°С.

Получение Вольфрама. Сырьем для получения Вольфрама служат вольфрамитовые и шеелитовые концентраты (50-60% WO 3). Из концентратов непосредственно выплавляют ферровольфрам (сплав железа с 65-80% Вольфрама), используемый в производстве стали; для получения Вольфрама, его сплавов и соединений из концентрата выделяют вольфрамовый ангидрид. В промышленности применяют несколько способов получения WО 3 . Шеелитовые концентраты разлагают в автоклавах раствором соды при 180-200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту):

1. CaWO 4 тв +Na 2 CO 3 ж = Na 2 WO 4 ж + CaCO 3 тв

2. CaWO 4 тв +2НCl ж = H 2 WO 4 тв +СаCl 2 р-р.

Вольфрамитовые концентраты разлагают либо спеканием с содой при 800-900°С с последующим выщелачиванием Na 2 WO 4 водой, либо обработкой при нагревании раствором едкого натра. При разложении щелочными агентами (содой или едким натром) образуется раствор Na 2 WO 4 , загрязненный примесями. После их отделения из раствора выделяют H 2 WO 4 . Для получения более грубых, легко фильтруемых и отмываемых осадков вначале из раствора Na 2 WO 4 осаждают CaWO 4 , который затем разлагают соляной кислотой.) Высушенная H 2 WO 4 содержит 0,2 - 0,3% примесей. Прокаливанием H 2 WO 4 при 700-800°С получают WO 3 , а уже из него - твердые сплавы. Для производства металлического Вольфрама H 2 WO 4 дополнительно очищают аммиачным способом - растворением в аммиаке и кристаллизацией паравольфрамата аммония 5(NH 4) 2 O·12WO 3 ·nH 2 O. Прокаливание этой соли дает чистый WO 3 . Порошок Вольфрама получают восстановлением WO 3 водородом (а в производстве твердых сплавов - также и углеродом) в трубчатых электрических печах при 700-850°С. Компактный металл получают из порошка металлокерамическим методом, то есть прессованием в стальных прессформах под давлением 3000-5000 кгс/см 2 и термической обработкой спрессованных заготовок - штабиков. Последнюю стадию термической обработки - нагрев примерно до 3000°С проводят в специальных аппаратах непосредственно пропусканием электрического тока через штабик в атмосфере водорода. В результате получают Вольфрам, хорошо поддающийся обработке давлением (ковке, волочению, прокатке и т. д.) при нагревании. Из штабиков методом бестигельной электроннолучевой зонной плавки получают монокристаллы Вольфрама.

Применение Вольфрама. Вольфрам широко применяется в современное технике в виде чистого металла и в ряде сплавов, наиболее важные из которых - легированные стали, твердые сплавы на основе карбида Вольфрама, износоустойчивые и жаропрочные сплавы. Вольфрам входит в состав ряда износоустойчивых сплавов, используемых для покрытия поверхностей деталей машин (клапаны авиадвигателей, лопасти турбин и другие). В авиационной и ракетной технике применяют жаропрочные сплавы Вольфрама с других тугоплавкими металлами. Тугоплавкость и низкое давление пара при высоких температурах делают Вольфрам незаменимым для нитей накала электроламп, а также для изготовления деталей электровакуумных приборов в радиоэлектронике и рентгенотехнике. В различных областях техники используют некоторые химические соединения Вольфрама, например Na 2 WO 4 (в лакокрасочной и текстильной промышленности), WS 2 (катализатор в органических синтезе, эффективная твердая смазка для деталей трения).

Физические свойства Вольфрама.

Вольфрам.

Вольфрам (Wolframium) W - элемент VI группы, 6-го периода периодической системы Д. И. Менделеева, п. н. 74, атомная масса 183,85. Открыт в 1781 г. К. Шееле. Вольфрам мало распространен в природе. Образует собственные минералы - вольфрамит и шеелит; содержится как примесь в минералах олова, молибдена, титана. Вольфрам - светло-серый металл, в обычных условиях химически стоек. При повышенных температурах реагирует с кислородом, углеродом и другими элементами. С фтором реагирует при 20° C, с другими галогенами - при нагревании. Кислоты, за исключением плавиковой и азотной, на Вольфрам не действуют. В соединениях проявляет переменную валентность. Наиболее устойчивы соединения 6-валентного Вольфрама. Применяют Вольфрам для легирования сталей, для изготовления твердых сплавов нитей накаливания электроламп, нагревателей в электрических печах, электродов для сварки, катодов генераторных ламп, выпрямителей высокого напряжения.

Вольфрам кристаллизуется в объемноцентрированной кубической решетке с периодом а =3,1647Å; плотность 19,3 г/см3, tпл 3410°C, tкип 5900°С. Теплопроводность (кал/см·сек·°С) 0,31 (20°С); 0,26 (1300°С). Удельное электросопротивление (ом·см·10-6) 5,5 (20°С); 90,4 (2700°С). Работа выхода электронов 7,21·10-19 дж (4,55 эв), мощность энергии излучения при высоких температурах (вт/см2): 18,0 (1000°С); 64,0 (2200°С); 153,0 (2700°С); 255,0 (3030°С). Механические свойства Вольфрама зависят от предшествующей обработки. Предел прочности при растяжении (кгс/мм2) для спеченного слитка 11, для обработанного давлением от 100 до 430; модуль упругости (кгс/мм1) 35000-38000 для проволоки и 39000-41000 для монокристаллической нити; твердость по Бринеллю (кгс/мм2) для спеченного слитка 200-230, для кованного слитка 350-400 (1 кгс/мм2 = 10 Мн/м2). При комнатной температуре Вольфрам малопластичен.

В обычных условиях Вольфрам химически стоек. При 400-500°С компактный металл заметно окисляется на воздухе до WO3. Пары воды интенсивно окисляют его выше 600°С до WO3. Галогены, сера, углерод, кремний, бор взаимодействуют с Вольфрамом при высоких температурах (фтор с порошкообразным Вольфрамом - при комнатной). С водородом Вольфрам не реагирует вплоть до температуры плавления; с азотом выше 1500°С образует нитрид. При обычных условиях Вольфрам стоек к соляной, серной, азотной и плавиковой кислотам, а также к царской водке; при 100°С слабо взаимодействует с ними; быстро растворяется в смеси плавиковой и азотной кислот. В растворах щелочей при нагревании Вольфрам растворяется слегка, а в расплавленных щелочах при доступе воздуха или в присутствии окислителей - быстро; при этом образуются вольфраматы. В соединениях Вольфрам проявляет валентность от 2 до 6, наиболее устойчивы соединения высшей валентности.



Вольфрам образует четыре оксида: высший - WO3 (вольфрамовый ангидрид), низший - WO2 и два промежуточных W10О29 и W4O11. Вольфрамовый ангидрид - кристаллический порошок лимонно-желтого цвета, растворяющийся в растворах щелочей с образованием вольфраматов. При его восстановлении водородом последовательно образуются низшие оксиды и Вольфрам. Вольфрамовому ангидриду соответствует вольфрамовая кислота H2WO4 - желтый порошок, практически не растворимый в воде и в кислотах. При ее взаимодействии с растворами щелочей и аммиака образуются растворы вольфраматов. При 188°С Н2WО4 отщепляет воду с образованием WO3. С хлором Вольфрам образует ряд хлоридов и оксихлоридов. Наиболее важные из них: WCl6 (tпл 275°С, tкип 348°C) и WO2Cl2 (tпл 266°С, выше 300°С сублимирует), получаются при действии хлора на вольфрамовый ангидрид в присутствии угля. С серой Вольфрам образует два сульфида WS2 и WS3. Карбиды вольфрама WC (tпл2900°C) и W2C (tпл 2750°С) - твердые тугоплавкие соединения; получаются при взаимодействии Вольфрама с углеродом при 1000-1500°С.

Понравилось? Лайкни нас на Facebook