Дивергенция и конвергенция в нервных сетях. Свойства нервных центров

Конверенция

(Лат. converqere - сближать, сходиться) - схождение к одному нейрону двух или нескольких возбуждений от сенсорных раздражителей (например звук, свет). Различают несколько видов конвергенции.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителей одновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов мультибиологическая - схождение к одному нейрону двух или нескольких возбуждений от биологических раздражителей например голод и боль, жажда и половое возбуждение).

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.

Дивергенция

(Лат. diverqere - направляется в разные стороны) - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками.

Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Иррадиация (от лат. irradio - сияю, испускаю лучи) в физиологии, распространение процесса возбуждения или торможения в центральной нервной системе.

Важную роль иррадиация играет в деятельности коры больших полушарий головного мозга. Иррадиация возбуждения особенно отчётливо проявляется при сильном раздражении, когда в рефлекторный ответ вовлекаются нервные центры, обычно в нём не участвующие.

Так, на умеренное болевое раздражение кожи стопы животное отвечает сгибанием лапы в голеностопном суставе; увеличение силы раздражения приводит к сгибанию ноги в коленном и тазобедренном суставах. При изучении действия тормозного условного раздражителя И. П. Павловым было показано, что торможение также может распространяться (иррадиировать) в клетках коры больших полушарий.

Реверберация - циркуляция возбуждения замкнутыми нейронами и их цепями в ЦНС.

Возбуждение одного из нейронов, входящих в эту цепь, передается на другой (или другие), к коллатералям аксонов и снова возвращается к нервной клетке и т.д.

Реверберация возбуждения наблюдается в так называемом рефлекторном последействии, когда рефлекторный акт заканчивается не сразу после прекращения, а через некоторый (иногда длительный) период, а также играет определенную роль в механизмах кратковременной (оперативной) памяти. Сюда же относится корково-подкорковая реверберация, которая играет важную роль в высшей нервной деятельности (поведении) человека и животных.

Одностороннее проведение

По нервным волокнам импульсы возбуждения способны распространяться в обе стороны от места раздражения. В центральной же нервной системе они распространяются обычно лишь в одном направлении - только с афферентных нейронов на эфферентные. Это означает, что в ЦНС импульсы передаются лишь с аксона одного нейрона на клеточное тело и дендриты других нейронов и не передаются с дендритов и с тела нервной клетки на подходящие к ним веточки аксона.

Указанная закономерность была впервые установлена в1823 году одновременно двумя исследователями - шотландцем И.Беллом и французским физиологом Ф.Мажанди - и получила название

закона Белла-Мажанди, согласно которому афферентные волокна вступают в спинной мозг через задние корешки, а эфферентные волокна покидают спинной мозг через передние корешки.

Одностороннее проведение возбуждения в нервных центрах обусловлено строением синапсов: медиаторы выделяются только концевыми аппаратами аксонов и к медиаторам чувствительна только постсинаптическая мембрана синапса, на которой возникает потенциал действия (возбуждающий или тормозящий). Таким образом, возбуждение в синапсе распространяется от окончаний аксона через медиатор на постсинаптическую мембрану тела нервной клетки, дендрита или вставочного нейрона. В обратном направлении передача возбуждения возможна только в электрическом синапсе, в котором возбуждение от пресинаптической мембраны передается к постсинаптической электрическим путем.

9.Основные принципы координационной деятельности ЦНС: реципрокности, облегчения, окклюзии, обратной связи, общего "конечного" пути, доминанты .

Координация - это объединение рефлекторной деятельности ЦНС в единое целое, что обеспечивает реализацию всех функций организма.

Принципы координации

1.Принцип иррадиации возбуждений. Нейроны разных центров связаны между собой вставочными нейронами, поэтому импульсы, поступающие при сильном и длительном раздражении рецепторов, могут вызвать возбуждение не только нейронов центра данного рефлекса, но и других нейронов. Например, если раздражать у спинальнои лягушки одну из задних лапок, слабо сдавливая ее пинцетом, то она сокращается (оборонительный рефлекс), если раздражение усилить, то происходит сокращение обеих задних лапок и даже передних. Иррадиация возбуждения обеспечивает при сильных и биологически значимых раздражениях включение в ответную реакцию большего количества мотонейронов.

2. Принцип общего конечного пути. Импульсы, приходящие в ЦНС по разным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным, или эфферентным, нейронам. Шеррингтон назвал это явление «принципом общего конечного пути». Один и тот же мотонейрон может возбуждаться импульсами, приходящими от различных рецепторов (зрительных, слуховых, тактильных), т.е. участвовать во многих рефлекторных реакциях (включаться в различные рефлекторные дуги).

3. Принцип доминанты. Был открыт А.А.Ухтомским, который обнаружил, что раздражение афферентного нерва (или коркового центра), обычно ведущего к сокращению мышц конечностей при переполнении у животного кишечника, вызывает акт дефекации. В данной ситуации рефлекторное возбуждение центра дефекации" подавляет, тормозит двигательные центры, а центр дефекации начинает реагировать на посторонние для него сигналы.

А.А.Ухтомский считал, что в каждый данный момент жизни возникает определяющий (доминантный) очаг возбуждения, подчиняющий себе деятельность всей нервной системы и определяющий характер приспособительной реакции. К доминантному очагу конвергируют возбуждения из различных областей ЦНС, а способность других центров реагировать на сигналы, приходящие к ним, затормаживается. Благодаря этому создаются условия для формирования определенной реакции организма на раздражитель, имеющий наибольшее биологическое значение, т.е. удовлетворяющий жизненно важную потребность.

4.Принцип обратной связи. Процессы, происходящие в ЦНС, невозможно координировать, если отсутствует обратная связь, т.е. данные о результатах управления функциями. Обратная связь позволяет соотнести выраженность изменений параметров системы с ее работой. Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом - отрицательной обратной связью. Положительная обратная связь в основном характерна для патологических ситуаций.

Отрицательная обратная связь обеспечивает устойчивость системы (ее способность возвращаться к исходному состоянию после прекращения влияния возмущающих факторов). Различают быстрые (нервные) и медленные (гуморальные) обратные связи. Механизмы обратной связи обеспечивают поддержание всех констант гомеостаза. Например, сохранение нормального уровня кровяного давления осуществляется за счет изменения импульсной активности баро-рецепторов сосудистых рефлексогенных зон, которые изменяют тонус вагуса и вазомоторных симпатических нервов.

5.Принцип реципрокности. Он отражает характер отношений между центрами, ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечностей), и заключается в том, что нейроны одного центра, возбуждаясь, тормозят нейроны другого и наоборот.

6. Принцип субординации (соподчинения). Основная тенденция в эволюции нервной системы проявляется в сосредоточении функций регуляции и координации в высших отделах ЦНС - цефализация функций нервной системы. В ЦНС имеются иерархические взаимоотношения - высшим центром регуляции является кора больших полушарий, базальные ганглии, средний, продолговатый и спинной мозг подчиняются ее командам.

7.Принцип компенсации функций. ЦНС обладает огромной компенсаторной способностью, т.е. может восстанавливать некоторые функции даже после разрушения значительной части нейронов, образующих нервный центр. При повреждении отдельных центров их функции могут перейти к другим структурам мозга, что осуществляется при обязательном участии коры больших полушарий. У животных, которым после восстановления утраченных функций удаляли кору, вновь происходила их утрата.

окклюзия

(Лат. occlusum - закрывать, замыкать) - взаимодействие двух потоков импульсов между собой.

Явление окклюзии было описано Ч. Шеррингтоном. Сущность его заключается во взаимном угнетении рефлекторных реакций, при котором суммарный результат оказывается значительно меньше, чем сумма взаимодействующих реакций. Согласно Ч.Шеррингтону, явление окклюзии объясняется перекрытием синаптических полей, образуемых афферентными звеньями взаимодействующих рефлексов. Поэтому при одновременном поступлении двух афферентных влияний возбуждающий постсинаптический потенциал вызывается каждым из них отчасти в одних и тех же мотонейронах спинного мозга.

Облегчение

После каждого, даже самого слабого раздражения, в нервном центре повышается возбудимость. При явлении суммации, когда в ЦНС идут два потока импульсов разделенных небольшим интервалом времени, то они вызывают значительно больший эффект, чем можно было ожидать в результате простого суммирования. Один поток импульсов как бы "проторяет путь” другому.

Процессы обработки информации, поступающей в нервный центр (если он сенсорный), или формирование команд к исполнительным органам (в ефекторному центре) обусловлены взаимодействием нейронов посредством синаптических контактов. В таком случае можно обнаружить явления, что называют дивергенцией и конвергенцией (рис. 37).

Дивергенция - это способность нейрона устанавливать многочисленные связи с другими нейронами. Вследствие этого одна и та же клетка может участвовать в различных нервных процессах и реакциях, контролировать большое число других нейронов, то есть каждый нейрон может обеспечить распространение импульсов - иррадиацию возбуждения. Процессы дивергенции более типичны для афферентных отделов ЦНС.

Конвергенция - схождение различных путей проведения нейрон-ных импульсов к одной и той же нервной клетки, больше присуща нервным центрам эфферентных отделов.

Большинство нервных центров представлено скоплением разнообразных нейронов. Среди них бывают как возбуждающие, так и тормозные нейроны, нейроны сенсорные и моторные (афферентные или эфферентные). их довольно сложное взаимодействие и обеспечивает выполнение соответствующих функций.

Взаимодействие рефлексов

В процесс регуляции большинства сложных функций организма, организации рефлекторного ответа очень часто привлекаются несколько нервных центров, которые могут размещаться даже на различных этажах ЦНС. Обусловлено это філогенетичними особенностями формирования ЦНС. Появление "младшего" отдела сопровождалась формированием в нем новых центров регуляции. Но и "старые" нервные центры, расположенные в низших отделах, сохраняли свойственные им функции. При этом терялась абсолютная автономность отдельных сегментов ЦНС, все большая часть функций "переходила" высшим отделам. Этот процесс получил название енцефалізації функций. Поскольку головной мозг формировался поэтапно, от заднего мозга до переднего с его большими полушариями, то с формированием коры больших полушарий происходит подчинение ей других отделов ЦНС, то есть кортикалізація функций.

Поскольку каждый из нервных центров отвечает за определенные рефлексы, во время их взаимодействия можно говорить о взаимодействии различных рефлексов. Это взаимодействие осуществляется на основе определенных закономерностей, которые позволяют ЦНС решать свои функциональные задачи как с целенаправленного регулирования различных систем организма, так и организации его поведения в конкретных, постоянно меняющихся условиях внешней среды.

Можно выделить такие принципы координации функций ЦНС.

1. Торможение в ЦНС.

Важной частью нейронных цепей, образующих рефлекторные дуги, является наличие тормозных нейронов (рис. 38). Вследствие этого ослабляется или совсем прекращается интенсивный процесс возбуждения, что в основном обеспечивает упорядочение проявления рефлекса. Пример торможения - реципрокне торможения мышц-антагонистов на уровне мотонейронов спинного мозга (рис. 38, а). Процесс тормозного влияния запускается через специальные тормозные клетки Реншо, содержащихся в спинном мозге. При поступлении афе

Рис. 38. Торможение в ЦНС : а - участие тормозных интернейронов спинного мозга (Г) в регуляции деятельности мышц-антагонистов: торможение (-) мотонейрона мышцы-разгибателя (МР) во время возбуждения (+) мотонейрона мышцы-сгибателя (МЗ); б - поворотное (постсинаптичне) торможения (МН - мотонейрон, Г - тормозная клетка Реншо; М - мышца); в - торможения нейронов промежуточного мозга с участием тормозной корзинного клетки (Г); г - пресинаптичне торможения (Г - тормозная клетка; Н - нейрон; Пр - пресинаптичне волокно; за Екклсом)

рентной импульсации они активируются одновременно с нейронами, которые возбуждаются, обеспечивая реципрокный взаимосвязь при осуществлении двигательных рефлексов: мотонейроны одних мышц возбуждаются, а их антагонистов - тормозятся.

Второй, довольно распространенный, тип первичного торможения - возвратное торможение (рис. 38, б). Клетки Реншо располагаются еще и таким образом, что через коллатерали возбужденного мотонейрона вызывают его торможение. Это типичный пример отрицательной обратной связи, когда подавляется чрезмерная импульсация.

2. Иррадиация и концентрация нервных процессов.

Возбуждение, возникшее в одном из центров, может распространяться через коллатерали и синапсы на другие центры. Процесс иррадиации чаще всего развивается в случае действия сильного раздражителя. Например, во время сильного давления на лапку лягушки сокращаются не одна, а все конечности. Через некоторое время иррадиация меняется на явление концентрации возбуждения в необходимом центре. Это обусловлено действием тормозных синаптических связей. Процессы иррадиации и концентрации основываются на свойствах конвергенции и дивергенции.

3. Явления суммации и окклюзии

(рис. 39). Суммация (облегчение) оказывается во время воздействия нескольких подпороговых стимулов (с разных рецепторов), каждый из которых, действуя отдельно, не вызывает ответа. А их суммация (при условии рядом расположенных синаптических полей) способствует проявлению ответа нервного центра (явление облегчения).

Рис. 39. Схема, иллюстрирующая явление облегчения (1) и окклюзии (2) нервного импульса: а - в центральных кругах изображены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон (В, 2); пунктирными линиями обведены нейроны, которые возбуждаются только за одновременного раздражения обеих нервных волокон; б -в центральной части, образованной кругами, перекрещивающихся расположены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон

Противоположное явление - окклюзии (заклинивания) - развивается при тех же условиях расположения синаптических полей, но при одновременном действии нескольких раздражителей надграничної силы. Суммарная ответ может быть меньшим, чем арифметическая сумма ответов на каждый из раздражителей в отдельности, что происходит за "перекрытия" как на уровне рецептора, так и общих центральных нейронов.

4. Принцип "общего конечного пути"

(рис. 40). Он основывается на явлении конвергенции. Афферентных входов в ЦНС значительно больше, чем эфферентных выходов. Следовательно, один и тот же рефлекс можно вызвать, раздражая различные рефлекторные поля.

5. Принцип доминантного очага.

Содержание принципа заключается в том, что в случае одновременного возбуждения нескольких нервных центров один из очагов может стать доминантным. Вследствие этого к нему могут активно привлекаться (иррадиировать) возбуждения из других очагов, что приведет к суммации возбуждения, усиливая доминантное возбуждение. Высокую возбудимость нейронов обусловливают соответствующая аферентна импульсация (например из переполненного мочевого пузыря), гуморальные влияния. В результате оказывается, что для организма функция этого центра в конкретный временной промежуток становится важнейшей.

Основные признаки доминантного очага следующие:

1) стойкость возбуждения во времени;

2) повышенная возбудимость;

3) способность к суммации. Доминанта - это физиологическое основание возникновения взаимосвязей между отдельными нервными центрами при формировании условных рефлексов, основа внимания.

Рис. 40. а - клетки спинномозговых

ганглий; б - промежуточные нейроны; в - мотонейроны; г - мышцу (зачеркнуто тела нейронов, которые тормозят нервные импульсы; за Шеррингтоном)

Конвергенция нервных импульсов

Лат. converqere - сближать, сходиться - схождение к одному нейрону двух или нескольких возбуждений от сенсорных раздражителей (например звук, свет). Различают несколько видов конвергенции.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителейодновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов мультибиологическая - схождение к одному нейрону двух или нескольких возбуждений от биологических раздражителей например голод и боль, жажда и половое возбуждение).

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.

Дивергенция возбуждения

Лат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Облегчение, проторение пути, банунг

Нем. bachnunq - проторение пути. После каждого, даже самого слабого раздражения, в нервном центре повышается возбудимость. При явлении суммации, когда в ЦНС идут два потока импульсов разделенных небольшим интервалом времени, то они вызывают значительно больший эффект, чем можно было ожидать в результате простого суммирования. Один поток импульсов как бы "проторяет путь” другому.

Окклюзия

Лат. occlusum - закрывать, замыкать - взаимодействие двух потоков импульсов между собой. Впервые явление окклюзии было описано Ч. Шеррингтоном. Сущность его заключается во взаимном угнетении рефлекторных реакций, при котором суммарный результат оказывается значительно меньше, чем сумма взаимодействующих реакций. Согласно Ч.Шеррингтону, явление окклюзии объясняется перекрытием синаптических полей, образуемых афферентными звеньями взаимодействующих рефлексов. Поэтому при одновременном поступлении двух афферентных влияний возбуждающий постсинаптический потенциал вызывается каждым из них отчасти в одних и тех же мотонейронах спинного мозга.

Обмен веществ в нервных центрах

В нервных клетках, в противоположность нервному волокну, отмечается высокий уровень обмена веществ и чем больше дифференцирована нервная клетка, тем выше уровень обмена веществ. Если нервные клетки испытывают недостаток кислорода (например, при прекращении притока к ним крови), то через короткий срок они теряютспособность возбуждаться и погибают. При деятельности нервных центров их обмен веществ возрастает. При рефлекторном возбуждении спинного мозга потребление кислорода увеличивается в 3-4 раза против уровня покоя. При этом также увеличивается потребление сахара, образование СО2. В нервных клетках или в окончаниях аксонов идет синтез медиаторов и ряда биологически активных нейропептидов, нейрогормонов и других веществ.

Утомляемость нервных центров - постепенное снижение и полное прекращение ответа при продолжительном раздражении афферентных нервных волокон. Утомление нервных центров вызывается прежде всего нарушением проведения возбуждения в межнейронных синапсах. Тот факт, что утомление сначала возникает в синапсе доказывается простым опытом. В то время, как раздражение афферентного нервного волокна спинальной лягушки не вызывает сокращения мышцы, стимуляция эфферентного волокна приводит к мышечной реакции.

В настоящее время считают, что утомление синапса обусловлено резким снижением запаса медиатора в пресинаптической мембране (истощение), уменьшением чувствительности постсинаптической мембраны (десенсетизация) и уменьшением энергетических ресурсов нейрона. Не все рефлекторные реакции одинаково быстро приводят к развитию утомления. Некоторые рефлексы могут в течение длительного времени протекать без развития утомления. К таким рефлексам относятся проприорецептивные тонические рефлексы.

Тонус

Греч. tonos - натяжение, напряжение - состояние незначительного постоянного возбуждения, в котором обычно находятся все центры, имеющие рефлекторный характер. Тонус двигательных центров поддерживается непрерывным потоком импульсов от проприорецепторов, заложенных в мышцах. Слабое возбуждение от центров по центробежным волокнам передается мышцам, которые всегда находятся в несколько сокращенном состоянии (тонусе). Перерезка афферентных или эфферентных волокон приводитк потере мышечного тонуса.

Пластичность нервных центров - способность нервных элементов к перестройке функциональных свойств под влиянием длительных внешних воздействий или при очаговых повреждениях нервной ткани. Посттравматическая пластичность выполняет компенсаторную функцию. В экспериментах Флуранса (1827), П.К. Анохина (1935) доказано, что пластичностью обладают все нервные клетки, но наиболее сложные формы пластичности проявляются в корковых клетках. И.П.Павлов считал кору больших полушарий высшим регулятором пластических перестроек нервной деятельности. В настоящее время под пластичностью понимают изменение эффективности или направленности связей между нервными клетками.

Доминанта

Лат. dominantis - господствующий - временно господствующая рефлекторная система, обуславливающая интегральный характер функционирования нервных центров в какой-либо период времени и определяющая целесообразное поведение животного в конкретный, данный период времени. Доминантный нервный центр притягивает к себе возбуждение из других нервных центров и одновременно подавляет их деятельность, что приводит к блокаде реакций этих центров на те стимулы, которые ранее активировали их. Типичные черты доминанты проявляются в обнимательном рефлексе у самцов лягушек весной. Любое раздражение, например нанесение на лапку кислоты, приводит в таком состоянии к усилению обнимательного рефлекса.

Характерные черты доминанты: повышенная возбудимость, стойкость, способность к суммированию и инертность возбуждения, т.е. способность продолжать реакцию, когда первоначальный стимул уже миновал. Учение о доминанте разработано А.А.Ухтомским (1923). Доминанта является общим рабочим принципом центральной нервной системы..

Исходя из физиологических представлений, нервный «центр» может располагаться на разных уровнях ЦНС и участвовать в регуляции какой-либо фиpиологической функции (дыхание, пищеварение и т.д.) или в совершении какого-либо рефлекса.
К функциональным свойствам рефлекторных центров относятся: иррадиация возбуждения; конвергенция и дивергенция ; суммирование; синаптическое облегчение и окклюзия; трансформация ритма, реверберация возбуждения; тоническое состояние центров, их быстрая утомляемость, большая чувствительность к недостатку кислорода и к действию некоторых ядов.

Иррадиация возбуждения

Активное распространение возбуждения в ЦНС, особенно при сильном и длительном раздражении, получило название иррадиации. Возможность иррадиации в ЦНС обусловлена наличием в ней многочисленных ответвлений отростков (аксонов, дендритов) нервных клеток и цепей интернейронов, которые соединяют между собой различные нервные центры (благодаря этому возбуждение распространяется определенными путями и с определенной последовательностью). Важную роль в иррадиации возбуждения в структурах мозга играет .

Усиление раздражения или повышение возбудимости ЦНС сопровождается усилением иррадиации возбуждения в ней. Тормозные нейроны и синапсы препятствуют иррадиации возбуждения или ограничивают ее. При введении стрихнина, блокирующего постсинаптическое торможение, возникает сильное возбуждение ЦНС, которое сопровождается судорогами всех скелетных мышц. Иррадиация может стать патологической в связи с возникновением сильного очага возбуждения и с изменением свойств нервной ткани, усиливает распространение возбуждения. Это бывает при эпилепсии .

Конвергенция возбуждения

На каждом из нейронов ЦНС конвергирует (сходятся) различные афферентные волокна. Таких афферентных входов для большинства нейронов много десятков и даже тысяч. Так, на мотонейронах заканчиваются в среднем 6000 коллатералей аксонов, которые поступают от периферических рецепторов и различных структур мозга, образуя возбуждающие и тормозные синапсы. Это такое универсальное явление, можно говорить о принципе конвергенции в нейронах и их связях. Благодаря этому явлению в один и тот же нейрон одновременно поступают многочисленные и разнообразные потоки возбуждений, которые затем подлежат сложной обработке и перекодируются и формируются в единое возбуждение - аксонноу, что идет к следующему звену нервной сетки. Конвергенция возбуждения на нейроне является универсальным фактором его интегративной деятельности.

Различают мультисенсорную, мультибиологическую и сенсорно-биологическую формы конвергенции. В первом случае на нейрон поступают сигналы различной сенсорной модальности (зрительные, слуховые, болевые и др.), во втором - потоки возбуждений различной биологической модальности (пищевые, половые и др.), в третьем - сигнализация (зрительная, пищевая) и другие.

Дивергенция возбуждения

Дивергенция (расхождение) возбуждения - способность одиночного нейрона устанавливать в многочисленных синаптических связях с различными нервными клетками. Например, афферентные волокна периферических рецепторов, входя в спинной мозг в составе задних корешков, дальше разветвляются на многочисленные коллатерали, которые идут к спинальным нейронам. Благодаря дивергенции одна и та же нервная клетка может принимать участие в организации различных реакций и контролировать большое количество нейронов. Одновременно каждый нейрон может обеспечивать широкое перераспределение импульсов, что ведет к иррадиации возбуждения. Конвергенция и дивергенция взаимно связаны.

Реверберация возбуждения

Циркуляция возбуждения замкнутыми нейронами и их цепями в ЦНС называется реверберацией. Возбуждение одного из нейронов, входящих в эту цепь, передается на другой (или другие), а коллатералям аксонов снова возвращается к нервной клетки и т.д.

Реверберация возбуждения наблюдается в так называемом рефлекторном последействии, когда рефлекторный акт заканчивается не сразу после прекращения, а через некоторый (иногда длительный) период, а также играет определенную роль в механизмах кратковременной (оперативной) памяти. Сюда же относится корково-подкорковая реверберация, которая играет важную роль в высшей нервной деятельности (поведении) человека и животных.

Тонус нервных центров

Многие центры, т.е. нейронов, которые их составляют, постоянно генерируют нервные импульсы. Они поступают от эффекторов, что свидетельствует о существовании некоторого постоянного тонического возбуждения, т.е. тонуса нервных центров.
Указанное свойство нервного центра проще рассмотреть на примере объединения мотонейронов (мотонейронного пула).
При раздражении афферентного мышечного нерва надпороговым одиночным стимулом мотонейрона, иннервирующего соответствующие мышцы, возникает моносинаптический ВПСП. В зависимости от числа синаптических контактов и уровня поляризации часть мотонейронов деполяризуется до порогового уровня, и в них происходит импульсивный разряд. Эти мотонейроны составляют так называемую зону разряда. Вторая (обычно значительно большая) часть мотонейронов этого пула не достигает критического уровня деполяризации и не разряжается, но на время развития ВПСП, как правило, увеличивается возбудимость этих «молчаливых» нейронов. Эти нейроны составляют так называемую подпороговую зону нервного центра.
Подпороговая зона увеличивается при усилении афферентного раздражения гораздо быстрее, чем зона разряда. Причем при любой интенсивности раздражения подпорогового возбуждения нейронов всегда больше, чем тех, что разряжаются, т.е. соответствуют импульсной активности (соотношение примерно 80:20).
Как в свете этих данных представить себе тонус нервных центров? Очевидно, что тонус центров определяется соотношением нейронов, которые «молчат», и нейронов, которые разряжаются, т.е. нейронов подпороговой зоны и зоны разряда. Если схематично изобразить нервный центр, который состоит из 50 нейронов, то тонус такого центра намного выше, когда импульсная активность наблюдается у 25 нейронах из 50, чем тогда, когда раздражаются только 10 клеток.
Можно допустить, что чем выше тоническая активность центра, т.е. чем больше нейронов генерирует потенциалы действия в данный момент, тем меньше возможности центра развивать рефлекторную деятельность в ответ на дополнительное раздражение. Центр слева находится в состоянии высокого тонуса, но у него только половина нейронов может «включиться» в ответ на дополнительные стимулы. Центр справа имеет низкую тоническую активность, но у него больше резервов для «включения» в рефлекторные реакции. Действительно, центры с постоянным тонусом (например, ядро блуждающего нерва) имеют тем меньшую рефлекторную возбудимость, чем выше их тоническая активность.

Нервные центры легко утомляются. Это проявляется постепенным снижением и даже полным прекращением импульсных разрядов при длительном раздражении афферентных волокон. В то же время раздражение эфферентного нерва (например, мышечного) еще продолжает вызывать сокращение мышцы. Если учесть, что нерв практически не устает, то усталость, которая развивается, прежде локализуется в нервном центре. Усталость центров связана главным образом с резким нарушением синаптической передачи (уменьшение запасов и синтеза медиатора, снижение чувствительности к медиатору постсинаптической мембраны, уменьшение энергетических резервов нервной клетки и др.).

Чувствительность нервных центров к гипоксии. Функции нервных центров зависят от снабжения их кислородом. Нуждаясь в большом количестве кислорода (мозг человека потребляет примерно 40-50 мл кислорода в 1 мин, т.е. 1/6-1/8 часть кислорода, необходимого организму в состоянии покоя), нервные клетки, особенно высших отделов ЦНС, очень чувствительны к его недостатку (гипоксии). Полное или частичное прекращение кровообращения мозга ведет к тяжелым нарушениям его деятельности и к гибели нервных клеток. Даже кратковременное резкое падение кровяного давления в мозгу вызывает у человека немедленную потерю сознания. Клетки коры большого мозга подлежат необратимым изменениям и погибают уже через 5-6 мин после полного прекращения кровообращения, при температуре 37 ° С функции клеток ствола головного мозга и спинного мозга нарушаются соответственно через 15 и 30 мин.

Нервные клетки и синапсы обладают избирательной чувствительностью к некоторым ядам, в частности к стрихнину, морфину, алкоголю, наркотическим веществам (эфир, хлороформ, барбитураты) и другие, их изучением занимается нейрофармакология.

Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией .

Лат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Если же наоборот, от нескольким нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис).

Конвергенция означает объединение сигналов множественных входов на одном нейроне. На рисунке схематически изображена конвергенция сигналов, исходящих из одного источника. Это значит, что на одном нейроне заканчиваются многочисленные терминали нервных волокон одиночного тракта. Этот тип конвергенции важен, поскольку нейроны почти никогда не возбуждаются потенциалом действия одной входящей терминали. Но потенциалы действия многих терминалей, конвергирующих на нейроне, обеспечивают достаточную пространственную суммацию, чтобы сдвинуть мембранный потенциал нейрона до порогового уровня, необходимого для его возбуждения.

Возможна также конвергенция сигналов (возбуждающих или тормозящих), исходящих из многих источников. Например, на вставочных нейронах спинного мозга конвергируют сигналы от:

(1) периферических нервных волокон, входящих в спинной мозг;

(2) проприоспинальных волокон, идущих от одного сегмента спинного мозга к другому;

(3) кортикоспинальных волокон из коры большого мозга;

(4) нескольких других длинных нисходящих путей из головного в спинной мозг. Затем сигналы от вставочных нейронов сходятся на мотонейронах спинного мозга, непосредственно управляющих функцией скелетных мышц.

Такая конвергенция позволяет осуществлять суммацию информации из различных источников, а ответная реакция нейрона является результатом интеграции всей этой информации. Конвергенция - один из важных способов, с помощью которых центральная нервная система коррелирует, интегрирует и сортирует различные типы информации.

Иногда в ответ на сигнал, входящий в нервный пул, на выходе одновременно появляются возбуждающий сигнал, идущий в одном направлении, и тормозной сигнал, направляющийся по другому пути. Например, когда в спинном мозге одна группа нейронов посылает возбуждающий сигнал для движения ноги вперед, через другую группу нейронов передается сигнал, тормозящий мышцы, двигающие эту ногу назад, чтобы они не мешали движению вперед. Этот тип контура, называемый контуром с реципрокным торможением , характерен для всех нервных центров, управляющих мышцами-антагонистами.

На рисунке показан механизм развития такого торможения.

Входящее волокно одновременно стимулирует возбуждающий выход пула (нейрон 1) и вставочный тормозной нейрон (нейрон 2), секретирующий медиатор, который тормозит второй выход пула. Этот тип контура важен также для предупреждения гиперактивности во многих частях мозга.

Например, к одному мотонейрону могут подходить нервные окончания от нескольких афферентных нейронов. В таких сетях вышележащие нейроны управляют ниже лежащими.

Иерархические системы обеспечивают очень точную передачу информации.

В результате конвергенции (когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня) или дивергенции (когда контакты устанавливаются с большим числом клеток следующего уровня) информация фильтруется и происходит усиление сигналов.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителей одновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.

Но подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Любая инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему.

Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети.

Иерархические системы существуют, конечно, не только в сенсорных или двигательных путях. Тот же тип связей характерен для всех сетей, выполняющих какую-то специфическую функцию.

БЕЗВЕРХОВА

Локальные сети .

3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров.

В связи с наличием многочисленных связей между нейронами сети в них может возникать иррадиация возбуждения. Это его распространение на все нейроны. В результате иррадиации возбуждение может переходить на другие нервные центры и даже охватывать всю нервную систему.

В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов:

Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они широко распространены во всех мозговых сетях.

Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

Понравилось? Лайкни нас на Facebook