Разделы

Авто
Бизнес
Болезни
Дом
Защита
Здоровье
Интернет
Компьютеры
Медицина
Науки
Обучение
Общество
Питание
Политика
Производство
Промышленность
Спорт
Техника
Экономика

Динамическая межотраслевая балансовая модель

Рассмотренные выше межотраслевые балансовые модели являются статическими, т. е. такими, в которых все зависимости отнесены к одному моменту времени. Эти модели могут разрабатываться лишь для отдельно взятых периодов, причем в рамках данных моделей не устанавливается связь с предшествующими или последующими периодами. Народнохозяйственная динамика отображается, таким образом, рядом независимо рассчитанных моделей, что очевидно вносит определенные упрощения и сужает возможности анализа.

В отличие от статических динамические модели призваны отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.

В рассматриваемой здесь динамической модели, являющейся развитием статической межотраслевой модели, производственные капитальные вложения выделяются из состава конечной продукции, исследуются их структура и влияние на рост объема производства. В основе построения модели в виде динамической системы уравнений лежит математическая зависимость между величиной капитальных вложений и приростом продукции. Решение системы, как и в случае статической модели, приводит к определению уровней производства, но в динамическом варианте в отличие от статического эти искомые уровни зависят от объемов производства в предшествующих периодах.

Принципиальная схема первых двух квадрантов динамического межотраслевого баланса приведена в табл. 4.

 

Таблица 4. Принципиальная схема динамического баланса

Модель содержит две матрицы межотраслевых потоков. Матрица текущих производственных затрат с элементами Хij совпадает с соответствующей матрицей статического баланса. Элементы второй матрицы ij показывают, какое количество продукции i-й отрасли направлено в текущем периоде в j-ю отрасль в качестве производственных капитальных вложений в ее основные фонды. Материально это выражается в приросте в потребляющих отраслях производственного оборудования, сооружений, производственных площадей, транспортных средств и др.

В статическом балансе потоки капиталовложений не дифференцируются по отраслям-потребителям и отражаются общей величиной в составе конечной продукции Yj каждой i-й отрасли. В динамической схеме конечный продукт Yi включает продукцию i-й отрасли, идущую в личное и общественное потребление, накопление непроизводственной сферы, прирост оборотных фондов, незавершенного строительства, на экспорт. Таким образом, сумма потоков капиталовложений и конечного продукта динамической модели равна конечной продукции статического баланса:

поэтому уравнение распределения продукции вида (2) в динамическом балансе преобразуется в следующее:

(27)

 

 

Межотраслевые потоки текущих затрат можно выразить, как в статической модели, через валовую продукцию отраслей с помощью коэффициентов прямых материальных затрат:

Xij = aijXj

В отличие от потоков текущих затрат межотраслевые потоки капитальных вложений связаны не со всей величиной выпуска продукции, а обусловливают прирост продукции;

причем в рассматриваемой модели предполагается, что прирост продукции текущего периода обусловлен вложениями, произведенными в этом же периоде. Если текущий период обозначить через t, то прирост продукции DXj равен разности абсолютных уровней производства в период t и в предшествующий (t - 1)-й период:

Полагая, что прирост продукции пропорционален приросту производственных фондов, можно записать:

(28)

 

Рассмотрим в равенстве (28) коэффициенты пропорциональности jij Поскольку

то экономический смысл этих коэффициентов заключается в том, что они показывают, какое количество продукции i-й отрасли должно быть вложено в j-ю отрасль для увеличения производственной мощности /-и отрасли на единицу продукции. Предполагается, что производственные мощности используются полностью и прирост продукции равен приросту мощности. Коэффициенты ji называются коэффициентами вложений,или коэффициентами приростной фондоемкости.

С помощью коэффициентов прямых материальных затрат и коэффициентов вложений ji систему уравнений (6.27) можно представить в следующем виде:

29

 

Система (29) представляет собой систему линейных разностных уравнений первого порядка. Ее можно привести к обычной системе линейных уравнений, если учесть, что все объемы валовой и конечной продукции относятся к некоторому периоду t, а прирост валовой продукции определен в сравнении c(t - 1)-м периодом:

Отсюда можно записать следующие соотношения:

30

Пусть нам известны уровни валовой продукции всех отраслей в предыдущем периоде (величины Хj(t-1) ) и конечный продукт отраслей в t-м периоде. Тогда очевидно, что соотношения (30) представляют собой систему п линейных уравнений с п неизвестными уровнями производства t-го периода. Таким образом, решение динамической системы линейных уравнений позволяет определить выпуск продукции в последующем периоде в зависимости от уровня, достигнутого в предыдущем периоде. Связь между периодами устанавливается через коэффициенты вложений j, ij характеризующие фондоемкость единицы прироста продукции.

Переходя от дискретного анализа к непрерывному, вместо (27) будем иметь:

Выражение (28) в пределе дает:

Окончательно для случая непрерывных изменений получим следующую систему соотношений:

31

Соотношения (31) представляют собой систему п линейных дифференциальных уравнений первого порядка с постоянными коэффициентами. Для ее решения помимо матриц коэффициентов прямых материальных текущих затрат и коэффициентов капитальных затрат (вложений) необходимо знать уровни валового выпуска в начальный момент времени t = 0 и закон изменения величины конечного продукта, т.е. вид функций Yi'(t). На основе этих данных путем решения получившейся задачи Коши для системы дифференциальных уравнений (31) можно найти уровни валового выпуска теоретически для любого момента времени. Практически же более или менее достоверное описание валовых и конечных выпусков как функций времени может быть получено лишь для относительно небольших промежутков времени.

В динамической модели особую роль играют коэффициенты приростной фондоемкости jij Они образуют квадратную матрицу п-го порядка

каждый столбец которой характеризует для соответствующей j-й отрасли величину и структуру фондов, необходимых для увеличения на единицу ее производственной мощности (выпуска продукции). Матрица коэффициентов приростной фондоемкости дает значительный материал для экономического анализа и планирования капитальных вложений.

Дата публикации:2014-01-23

Просмотров:656

Вернуться в оглавление:

Комментария пока нет...


Имя* (по-русски):
Почта* (e-mail):Не публикуется
Ответить (до 1000 символов):







 

2012-2018 lekcion.ru. За поставленную ссылку спасибо.