Распределение электронов по электронным. Распределение электронов по орбиталям. Энергия связи ядер

Тема урока: «Распределение электронов по атомным орбиталям»

Цель: изучить распределение электронов по орбиталям

Развивающая: развитие логического мышления по средствам установления причинно-следственных связей.

Образовательная: изучить такие понятия как: электронное облако, орбиталь, атомная орбиталь, формы существования орбиталей, правила заполнения орбиталей.

Положение элемента в периодической таблице обуславливает его свойства, порядковый номер- показывает заряд ядра атома, номер периода-количества энергетических уровней, номер группы-число электронов на последнем энергетическом уровне.

Электроны распределяются вокруг ядра по энергетическим уровням и движутся по определенным атомным орбиталям.

Атомная орбиталь – это область наиболее вероятного пребывания электрона в электрическом поле ядра атома

Положение элемента в пс определяет тип его орбиталей, различающихся формой, размерами

s-орбиталь

p- орбиталь

d- орбиталь

для элементов первого периода характерна одна эс орбиталь, у элементов 2 периода к эс орбитали добавляется п орбиталь, у элементов 3 периода появляется d

Порядок заполнения уровней и подуровней электронами .

I. Электронные формулы атомов химических элементов составляют в следующем порядке:

· Определяем по номеру элемента в таблице Д. И. Менделеева общее число электронов в атоме;

· По номеру периода необходимо определить число энергетических уровней;

· Уровни разбиваются на подуровни и орбитали, и заполняются электронами в соответствии Принципом наименьшей энергии

· Для удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N=2n2 и с учётом того, что:

1. у элементов главных подгрупп (s-;p-элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu, Ag, Au, Cr, Nb, Mo, Ru, Rh , у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

II. Порядок заполнения электронами атомных орбиталей определяется :

1.Принципом наименьшей энергии

Шкала энергий :

III. Семейства химических элементов.

Элементы, в атомах которых происходит заполнение электронами s-подуровня внешнего s-элементами . Это первые 2 элемента каждого периода, составляющие главные подгруппы I и II групп.

Элементы, в атомах которых электронами заполняется p-подуровень внешнего энергетического уровня, называются p-элементами . Это последние 6 элементов каждого периода (за исключением I и VII ), составляющие главные подгруппы III-VIII групп.

Элементы, в которых заполняется d-подуровень второго снаружи уровня, называются d-элементами . Это элементы вставных декад IV, V, VI периодов.

Элементы, в которых заполняется f-подуровень третьего снаружи уровня, называются f-элементами . К f-элементам относятся лантаноиды и актиноиды.

Электроны распределяются по подуровням, образуя вокруг ядра облака определенной формы, это распределение зависит от количества их энергий, то есть чем ближе электрон к ядру атома, тем меньше его количество энергии.

Электроны стремятся занять положение, соответствующее минимальному значению энергии, и располагаются вокруг ядра согласно принципу Паули. Как известно из предыдущих тем, наибольшее число электронов, которые могут расположиться в каждом электронном слое, определяется по формуле N = 2n 2 . Первый электронный слой или слой К находится на самом близком расстоянии от ядра атома и имеет n=1. В соответствии с этим на этом слое совершают движение N=2-1 2 =2 электрона. На втором электронном слое могут разместиться 8, на третьем - 18, а на четвертом - 32 электрона.

Во внешних электронных слоях всех элементов (кроме элементов 1 периода) находится не более восьми электронов. Внешние электронные слои инертных газов (за исключением гелия) заполнены восемью электронами, поэтому эти газы химически устойчивы.

На внешнем энергетическом уровне элементов основной подгруппы периодической таблицы число электронов равно номеру группы. Число электронов во внешнем слое элементов побочной подгруппы не превышает двух, при переходе от одного элемента ко второму притягиваемые электроны переходят из внешнего слоя во внутренний, так как внешний пополняется ns 2 ·nр 6 электронами, а присоединяющиеся электроны занимают подуровень nd.

Так, атом марганца имеет следующее строение: Мn(+25) 2, 8, 13, 2, а его электронная формула: 1s 2 · 2s 2 · 2p 6 · 3s 2 · 3p 6 · 3d 5 · 4s 2 .

Согласно принципу Паули, в любом атоме не может быть двух электронов с одинаковыми квантовыми числами.

Следовательно, на каждой орбитали атома значение трех квантовых чисел - n, l, m (главного, орбитального и магнитного) может быть одинаковым, однако спиновые квантовые числа (s) различаются, то есть имеются электроны с противоположными спинами .

Пополнение подуровней электронами было выяснено с помощью правила В.М. Клечковского (1900-1972 гг.) согласно которому, электроны заполняют энергетические подуровни в следующем порядке:



Порядок заполнения ячеек (клеточек) энергических уровней электронами подчиняется правилу Хунда. Сначала происходит заполнение ячеек 2р заняты шестью электронами. Следующий электрон, согласно правилу Клечковского, переходит в энергетический подуровень 3s:

19. Правило Клечковского гласит:

Правило n + l предложено в 1936 г. немецким физиком Э. Маделунгом; в 1951 г. было вновь сформулировано В. М. Клечковским.

Электронная оболочка атома - область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не превышает определенного максимального значения.

Порядок заполнения электронных оболочек (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числаl) определяется Правилом Хунда.

20.А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома.

Атомное ядро состоит из нуклонов - положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия

Количество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуруэлектронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называютсяизотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом () и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Ядерная реакция - процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом. Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

· реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергиисталкивающихся частиц (примерно до 10 МэВ).

· прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Лишь небольшая часть нуклидов являются стабильными. В большинстве случаев ядерные силы оказываются неспособны обеспечить их постоянную целостность, и ядра рано или поздно распадаются. Это явление получило название радиоактивности.

Радиоактивность

Радиоактивностью называется способность атомного ядра самопроизвольно распадаться с испусканием частиц. Радиоактивный распад характеризуется временем жизни радиоактивного изотопа, типом испускаемых частиц, их энергиями.
Основными видами радиоактивного распада являются:

  • α-распад – испускание атомным ядром α-частицы;
  • β-распад – испускание атомным ядром электрона и антинейтрино, позитрона и нейтрино, поглощение ядром атомного электрона с испусканием нейтрино;
  • γ-распад – испускание атомным ядром γ-квантов;

· спонтанное деление – распад атомного ядра на два осколка сравнимой массы.

21. периодическая система и периодический закон К началу XIX в. было известно около 30 элементов, к середине XIX в.- около 60. По море накопления числа элементов возникла задача их систематизации. Таких попыток до Д.И. Менделеева было не меньше пятидесяти; за основу систематизации принимались: и атомный вес (ныне называемый атомной массой), и химический эквивалент, и валентность. Подходя к классификации химических элементов метафизически, пытаясь систематизировать только известные в то время элементы, ни один из предшественников Д. И. Менделеева не мог открыть всеобщую взаимосвязь элементов, создать единую стройную систему, отражающую закон развития материи. Эта важная, для науки задача была блестяще разрешена в 1869 г. великим русским ученым Д. И. Менделеевым, открывшим периодический закон.
За основу систематизации Менделеевым были взяты: а) атомный вес и б) химическое сходство между элементами. Наиболее ярким, выразителем сходства свойств элементов является их одинаковая высшая валентность. Как атомный вес (атомная масса), так и высшая валентность элемента представляют собой количественные, числовые константы, удобные для систематизации.
Расположив все известный в то время 63 элемента в ряд по возрастанию атомных масс, Менделеев заметил периодическую повторяемость свойств элементов через неодинаковые промежутки. В результате Менделеевым был создан первый вариант периодической системы.
Закономерный характер изменения атомных масс элементов по вертикалям и горизонталям таблицы, а также образовавшиеся в ней пустые мecта позволили Менделееву смело предсказать наличие n природе ряда элементов, еще не известных в то время науке и даже наметить их атомные массы и основные свойства, исходя из предполагаемого положения элементов в таблице. Это можно било сделать лишь на основе системы, объективно отражающей закон развития материи. Сущность периодического закона Д. И. Менделеев сформулировал в 1869 г.: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов (масс) элементов".

Конструкция современной периодической системы в принципе мало отличается от варианта 1871 г. Символы элементов в периодической системе расположены по вертикальным и горизонтальным графам. Это приводит к объединению элементов в группы, подгруппы, периоды. Каждый элемент занимает в таблице определенную клетку. Вертикальные графы – это группы (и подгруппы), горизонтальные – периоды (и ряды).

Ковалентная связь

Связь, возникающая при взаимодействии электронов с образованием обобщенных электронных пар, называется ковалентной.

В случае если взаимодействующие атомы имеют равные значения электроотрицательности, общая электронная пара в равной степени принадлежит обоим атомам, то есть находится на равном расстоянии от обоих атомов. Такая ковалентная связь называется неполярной . Она имеет место в простых веществах-неметаллах: H22, О22, N22, Cl22, P44, O33.

При взаимодействии атомов, имеющих различные значения электроотрицательности, например водорода и хлора, общая электронная пара оказывается смещенной в сторону атома с большей электроотрицательностью, то есть в сторону хлора.

Атом хлора приобретает частичный отрицательный заряд, а атом водорода - частичный положительный. Это пример полярной ковалентной связи .

Свойства ковалентной связи

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства органических соединений.

Направленность связи обусловливает молекулярное строение органических веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер.

Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

23. Ионная связь - химическая связь, образующаяся между атомами с большой разностьюэлектроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.
Так как ион может притягивать к себе ионы противоположного знака в любом направлении, ионная связь от ковалентной отличается ненаправленностью.

Взаимодействие друг с другом двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. Поэтому они могут притягивать и другие ионы противоположного знака, то есть ионная связь отличается ненасыщенностью.

24. Металлическая связь - химическая связь между атомами в металлическом кристалле, возникающая за счёт обобществления их валентных электронов.

Металлическая связь - связь между положительными иона­ми в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соот­ветствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отры­ваться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные элек­троны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.

Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.

Водородная связь

Атом водорода, соединенный с атомом фтора, кислорода или азота (реже - хлора, серы или других неметаллов), может образовывать еще одну дополнительную связь. Это открытие, сделанное в восьмидесятых годах девятнадцатого столетия, связывают с именами русских химиков М.А. Ильинского и Н.Н. Бекетова. Было установлено, что некоторые водородсодержащие группы атомов часто образуют устойчивую химическую связь с электроотрицательными атомами, входящими в состав другой или той же самой молекулы. Такая химическая связь получила название водородной связи.

Водородная связь - это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: А−Н... В (чертой обозначена ковалентная связь, тремя точками - водородная связь).

Водородная связь обусловлена электростатическим притяжением атома водорода (несущим положительный заряд δ+) к атому электроотрицательного элемента, имеющего отрицательный заряд δ−. В большинстве случаев она слабее ковалентной, но существенно сильнее обычного притяжения молекул друг к другу в твердых и жидких веществах. В отличие от межмолекулярных взаимодействий водородная связь обладает свойствами направленности и насыщаемости, поэтому ее нередко считают одной из разновидностей ковалентной химической связи. Она может быть описана с помощью метода молекулярных орбиталей как трехцентроваядвухэлектронная связь.

Одним из признаков водородной связи может служить расстояние между атомом водорода и другим атомом, ее образующим. Оно должно быть меньше, чем сумма радиусов этих атомов. Чаще встречаются несимметричные водородные связи, в которых расстояние Н... В больше, чем А−В. Однако в редких случаях (фтороводород, некоторые карбоновые кислоты) водородная связь является симметричной. Угол между атомами во фрагменте А−Н... В обычно близок к 180 o . Наиболее сильные водородные связи образуются с участием атомов фтора. В симметричном ионе − энергия водородная связи равна 155 кДж/моль и сопоставима с энергией ковалентной связи. Энергия водородная связи между молекулами воды уже заметно меньше (25 кДж/моль).

26. Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

· Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).

· В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Закон Гесса (1841г.)

Тепловой эффект (энтальпия) процесса зависит только от начального и конечного состояния и не зависит от пути перехода его из одного состояния в другое.

28. Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции - величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение умножается на −1.

В 1865 году Н. Н. Бекетовым и в 1867 году Гульдбергом и Вааге был сформулирован закон действующих масс: скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в степени, равные их стехиометрическим коэффициентам

Для элементарных реакций показатель степени при значении концентрации каждого вещества часто равен его стехиометрическому коэффициенту, для сложных реакций это правило не соблюдается. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы:

· природа реагирующих веществ,

· наличие катализатора,

· температура (правило Вант-Гоффа, Уравнение Аррениуса),

· давление,

· площадь поверхности реагирующих веществ.

Если мы рассмотрим самую простую химическую реакцию A + B → C, то мы заметим, что мгновенная скорость химической реакции величина непостоянная

29.Закон действия масс. В 1865 г. профессор Н.Н. Бекетов впервые высказал гипотезу о количественной взаимосвязи между массами реагентов и временем течения реакции.Эта гипотеза нашла подтверждение в законе действующих масс, который был установлен в 1867 г. двумя норвежскими химиками К. Гульдбергом и П. Вааге. Современная формулировка закона действующих масс такова:

При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Периодическая система элементов Менделеева.

Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева ) - классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра.

Группы

Группа, или семейство, - одна из колонок периодической таблицы. Для групп, как правило, характерны более существенно выраженные периодические тенденции, нежели для периодов или блоков.

В соответствии с международной системой именования группам присваиваются номера от 1 до 18 в направлении слева направо - от щелочных металлов к благородным газам.

Периоды

Период - строка периодической таблицы. В рамках периода элементы демонстрируют определенные закономерности во всех трех названных выше аспектах (атомный радиус, энергия ионизации иэлектроотрицательность), а также в энергии сродства к электрону.

Блоки

Ввиду значимости внешней электронной оболочки атома различные области периодической таблицы иногда описываются как блоки, именуемые в соответствии с тем, на какой оболочке находится последний электрон. S-блок включает первые две группы, то есть щелочные и щелочноземельные металлы, а также водород и гелий; p-блок состоит из последних шести групп (с 13 по 18 согласно стандарту именования ИЮПАК, или с IIIA до VIIIA по американской системе) и включает, помимо других элементов, все металлоиды. D-блок - это группы с 3 по 12 (ИЮПАК), они же - с IIIB до IIB по-американски, в которые входят все переходные металлы. F-блок, выносимый обычно за пределы таблицы, состоит из лантаноидов и актиноидов.

Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.



Состав и характеристики атомного ядра.

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом.

Атомное ядро состоит из нуклонов - положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом .

Количество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами.

Полное количество нуклонов в ядре называется его массовым числом () и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Масса

Из-за разницы в числе нейтронов изотопы элемента имеют разную массу , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12 C [сн 2] . Следует отметить, что стандартная масса, которая обычно приводится для нуклида - это масса нейтрального атома. Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов(более точное значение получится, если учесть ещё и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы. Согласно соотношению Эйнштейна, каждому значению массы соответствует полная энергия:

Где - скорость света в вакууме.

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях:

а так как 1 электронвольт = 1,602176·10 −19 Дж, то энергетический эквивалент а. е. м. в МэВ равен

Радиус

Анализ распада тяжёлых ядер уточнил оценку Резерфорда [сн 3] и связал радиус ядра с массовым числом простым соотношением:

где - константа.

Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил, то значение зависит от процесса, при анализе которого получено значение , усреднённое значение м, таким образом радиус ядра в метрах

Заряд

Число протонов в ядре определяет непосредственно его электрический заряд, у изотопов одинаковое количество протонов, но разное количество нейтронов. .

Впервые заряды атомных ядер определил Генри Мозли в 1913 году. Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

, где

И - постоянные.

Энергия связи ядер.

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

Ядерные силы.

Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10 –15 м. Длина (1,5 – 2,2)·10 –15 м называется радиусом действия ядерных сил.

Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер . Так называются ядра , в которых одинаково общее число нуклонов , но число протонов в одном равно числу нейтронов другом .

Ядерные силы обладают свойством насыщения , которое проявляется в том , что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов . Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A . Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.

Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов . Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.

Итак, перечислим общие свойства ядерных сил :

· малый радиус действия ядерных сил (R ~ 1 Фм);

· большая величина ядерного потенциала U ~ 50 МэВ;

· зависимость ядерных сил от спинов взаимодействующих частиц;

· тензорный характер взаимодействия нуклонов;

· ядерные силы зависят от взаимной ориентации спинового и орбитального моментов нуклона (спин-орбитальные силы);

· ядерное взаимодействие обладает свойством насыщения;

· зарядовая независимость ядерных сил;

· обменный характер ядерного взаимодействия;

· притяжение между нуклонами на больших расстояниях (r > 1 Фм), сменяется отталкиванием на малых (r < 0,5 Фм).

Так как при химических реакциях ядра реагирующих атомов остаются без изменения, то химические свойства атомов зависят прежде всего от строения электронных оболочек атомов. Поэтому мы подробнее остановимся на распределении электронов в атоме и главным образом тех из них, которые обусловливают химические свойства атомов (так называемые валентные электроны), а следовательно, и периодичность в свойствах атомов и их соединений. Мы уже знаем, что состояние электронов можно описать набором четырех квантовых чисел, но для объяснения строения электронных оболочек атомов нужно знать еще три следующих основных положения: 1) принцип Паули, 2) принцип наименьшей энергии и 3) пробило Гунда. Принцип Паули. В 1925 г. швейцарский физик В. Паули установил правило, названное впоследствии принципом Паули (или запретом Паули): в атоме ве может быть двух электронов, обладающих одинаковыми своисгя&ми. Зная, что свойства электронов характеризуются квантовыми числами, принцип Паули можно сформулировать и таким образом: в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы. Хотя бы одно из квантовых чисел л, /, mt или т3 должно обязательно отличаться. Так, электроны с одинаковыми кван- В дальнейшем условимся графически обозначать электроны, имеющие значения s= + lj2> стрелкой Т, и, имеющие значения J- ~lf2 - стрелкой Два электрона, имеющие одинаковые спины, часто называют электронами с параллельными спинами н обозначают ft (или Ц). Два электрона, имеющие противоположные спины, называют электронами с аптипараллелъными спинами н обозначают | J- товыми числами л, I и mt должны обязательно различаться спинами. Поэтому в атоме могут быть лишь два элекгрона с одинаковыми л, / и т,\ один с т,= -1/2, другой с тм= + 1/2. Напротив, если спины двух электронов одинаковы, должно отличаться одно из квантовых чисел: п, / или mh Зная принцип Паули, посмотрим теперь, сколько же электронов в атоме может находиться на определенной «орбите» с главным квантовым числом п. Первой «орбите» соответствует п= 1. Тогда /=0, mt-0 и тл может иметь произвольное значение: +1/2 или -1/2. Мы видим, что если п- 1, таких электронов может быть только два. В общем случае, при любом заданном значении л электроны прежде всего отличаются побочным квантовым числом /, принимающим значения от 0 до л-1. При заданных ли/ может бьггь (2/+1) электронов с разными значениями магнитного квантового числа т,. Это число должно быть удвоено, так как заданным значениям л, / и т{ соответствуют два разных значения проекции спина тх. Следовательно, максимальное число электронов с одинаковым квантовым числом л выражается суммой Отсюда ясно, почему на первом энергетическом уровне может быть не больше 2 электронов, на втором - 8, на третьем - 18 и т. д. Рассмотрим, например, атом водорода iH. В атоме водорода iH имеется один электрон, и спин этого электрона может быть направлен произвольно (т. е. ms^ + ij2 или mt= -1 /2), и электрон находится в s-co стоянии на первом энергетическом уровне с л- 1 (напомним еще раз, что первый энергетический уровень состоит из одного подуровня - 15, второй энергетический уровень - из двух подуровней - 2s и 2р, третий - из трех подуровней - 3*, Зру 3d и т. д.). Подуровень, в свою очередь, делится на квантовые ячейки* (энергетические состояния, определяемые числом возможных значений т{, т. е. 2/4-1). Ячейку принято графически изображать прямоугольником, направление спина электрона - стрелками. Поэтому состояние электрона в атоме водорода iH можно представить как Ijt1, или, что то же самое, Под «квантовой ячейкой» подразумеваете* орбиталь, характеризуемая одинаковым набором значений квантовых чисел п, I и т* в каждой ячейке могут помещаться максимум два электрона с аятипараллельными спинами, что обозначается ti- Распределение электронов в атомах В атоме гелия 2Не квантовые числа п- 1, /=0 и т{-0 одинаковы для обоих его электронов, а квантовое число т3 отличается. Проекции спина электронов гелия могут быть mt= +V2 и ms= - V2. Строение электронной оболочки атома гелия 2Не можно представить как Is-2 или, что то же самое, 1S И Изобразим строение электронных оболочек пяти атомов эле ментов второго периода периодической таблицы Менделеева: То, что электронные оболочки бС, 7N и вО должны быть заполнены именно так, заранее не очевидно. Приведенное расположение спинов определяется так называемым правилом Гунда (впервые сформулировано в 1927 г. немецким физиком Ф. Гун-дом). Правило Гунда. При данном значении I (т. е. в пределах определенного подуровня) электроны располагаются таким образом, чтобы суммарный ста* был максимальным. Если, например, в трех /^-ячейках атома азота необходимо распределить три электрона, то они будут располагаться каждый в отдельной ячейке, т. е. размещаться на трех разных р-ор-биталях: В этом случае суммарный спин равен 3/2, поскольку его проекция равна т3 - 4-1/2 + А/2+1/2 = 3/2* Эти же три электрона не могут быть расположены таким образом: 2р НИ потому что тогда проекция суммарного спина тм= +1/2 -1/2+ + 1/2=1/2. По этой причине именно так, как приведено выше, расположены электроны в атомах углерода, азота и кислорода. Рассмотрим далее электронные конфигурации атомов следующего третьего периода. Начиная с натрия uNa, заполняется третий энергетический уровень с главным квантовым числом п-3. Атомы первых восьми элементов третьего периода обладают следующими электронными конфигурациями: Рассмотрим теперь электронную конфигурацию первого атома четвертого периода калия 19К. Первые 18 электронов заполняют следующие орбитали: ls12s22p63s23p6. Казалось бы; что девятнадцатый электрон атома калия должен попасть на подуро-вань 3d, которому соответствуют п = 3 и 1=2. Однако на самом деле валентный электрон атома калия располагается на орбитали 4s. Дальнейшее заполнение оболочек после 18-го элемента происходит не в такой последовательности, как в двух первых периодах. Электроны в атомах располагаются в соответствии с принципом Паули и правилом Гунда, но так, чтобы их энергия была наименьшей. Принцип наименьшей энергии (наибольший вклад в разработку этого принципа внес отечественный ученый В. М. Клечковс-кий) - в атоме каждый электрон располагается так, чтобы его энергия была минимальной (что отвечает наибольшей его связи с ядром). Энергия электрона в основном определяется главным квантовым числом п и побочным квантовым числом /, поэтому сначала заполняются те подуровни, для которых сумма значений квантовых чисел пи/ является наименьшей. Например, энергия электрона на подуровне 4s меньше, чем на подуровне 3d, так как в первом случае п+/=4+0=4, а во втором п+/=3+2= 5; на подуровне 5* (п+ /=5+0=5) энергия меньше, чем на Ad (л + /=4+ 4-2=6); на 5р (л+/=5 +1 = 6) энергия меньше, чем на 4/(л-f/= =4+3=7), и т. д. Именно В. М. Клечковский впервые в 1961 г. сформулировал общее положение, гласящее, что электрон занимает в основном состоянии уровень не с минимальным возможным значением п, а с наименьшим значением суммы л+/« В том случае, когда для двух подуровней суммы значений пи/ равны, овачала идет заполнение подуровня с меньшим значением п. Например, на подуровнях 3d, Ар, 5s сумма значений пи/ равна 5. В этом случае происходит сначала заполнение подуровней с меньшими значениями л, т. е. 3dAp-5s и т. д. В периодической системе элементов Менделеева последовательность заполнения электронами уровней и подуровней выглядит следующим образом (рис. 2.4). Распределение электронов в атомах. Схема заполнения электронами энергетических уровней и подуровней Следовательно, согласно принципу наименьшей энергии во многих случаях электрону энергетически выгоднее занять подуровень «вышележащего» уровня, хотя подуровень «нижележащего» уровня не заполнен: Именно поэтому в четвертом периоде сначала заполняется подуровень 4s и лишь после этого подуровень 3d.

СОСТАВ И ЭЛЕКТРОННАЯ
СТРУКТУРА АТОМА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ
К ОБУЧАЮЩЕЙ ПРОГРАММЕ ДЛЯ УЧАЩИХСЯ
СПЕЦИАЛИЗИРОВАННЫХ КЛАССОВ
ОБЩЕОБРАЗОВАТЕЛЬНЫХ ШКОЛ

Продолжение. Начало см. в № 4, 6/2005

Методические указания

17. Учитывая описанные закономерности, рассмотрите состояние и распределение электронов по энергетическим уровням и орбиталям для атомов калия (Z = 19) и скандия (Z = 21).

Решение

1) Предшествующий калию в ПСХЭ элемент аргон (Z = 18) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома аргона:

Электронно-графическая формула атома аргона:

При распределении электронов в атоме К в соответствии с правилом Клечковского предпочтение отдается орбитали 4s (сумма квантовых чисел n + l равна: 4 + 0 = 4) по сравнению с орбиталью 3d (сумма квантовых чисел n + l равна: 3 + 2 = 5) как орбитали, имеющей минимальное значение n + l. Следовательно, для атома калия распределение электронов по орбиталям (электронно-графическая формула) имеет вид (см. п. 16 методических указаний):

Калий относится к s -элементам со следующей электронной формулой (конфигурацией) атома:

Распределение электронов по энергетическим уровням для атома К изображено ниже:

2) Предшествующий скандию в ПСХЭ элемент кальций (Z = 20) имеет следующее распределение электронов:

а) по уровням атома:

б) по орбиталям атома:

Электронная формула атома кальция:

Из орбиталей 3d (n + l равно: 3 + 2 = 5) и 4p (n + l равно: 4 + 1 = 5) при распределении электронов в атоме скандия по орбиталям предпочтение следует отдать 3d -орбитали как имеющей минимальное значение n = 3 при одинаковых суммах квантовых чисел (n + l ), равных пяти. Следовательно, скандий относится к d -элементам, и его атом характеризуется следующим распределением электронов по орбиталям:

Электронная формула атома скандия:

Распределение электронов по энергетическим уровням для атома Sc изображено ниже:

18. Дополните рисунок так, чтобы показать вид одной s -орбитали и трех р -орбиталей, ориентированных вдоль осей.

Таблица 5

Распределение электронов
по квантовым уровням и подуровням

Оболочка Энергетический
уровень n
Энергетический
подуровень l
Магнитное
число m
Число
орбиталей
Предельное
число
электронов
K 1 0 (s) 0 1 2
L 2 0 (s)
1 (p)
+1, 0, –1
1
3
4
2
6
8
M 3 0 (s)
1 (p)
2 (d)
0

1, 0, –1
+2, +1, 0, –1, –2

1
3
5
9
2
6
10
18
N 4 0 (s)
1 (p)
2 (d)
3 (f)
0
+1, 0, –1
+2, +1, 0, –1, –2
+3, +2, +1, 0, –1, –2, –3
1
3
5
7
16
2
6
10
14
32

20. Последовательность заполнения энергетических уровней атомов см. в табл. 6.

21. Число элементов в периоде таблицы Д.И.Менделеева определяется формулами:

а) для нечетных периодов:

L n = (n + 1) 2 /2,

б) для четных периодов:

L n = (n + 2) 2 /2,

где L n – число элементов в периоде, n – номер периода.

Определите число элементов в каждом периоде ПСХЭ Д.И.Менделеева.

Объясните:

а) полученную числовую закономерность с позиций состояния электронов в атомах и их распределения по энергетическим уровням;

б) разделение групп элементов на главные и побочные подгруппы;

в) предопределенность числа главных и побочных подгрупп в ПСХЭ Д.И.Менделеева с точки зрения теории строения атомов.

Проверьте в дальнейшем свои выводы по приложению 1 (П-21).

22. Строгая периодичность расположения элементов в ПСХЭ Д.И.Менделеева полностью объясняется последовательным заполнением энергетических уровней атомов (см. выше п. 20). Укреплению позиций периодического закона на основе закономерностей изменения электронной структуры атомов элементов, впервые предсказанных Н.Бором, способствовало открытие 72-го элемента. Еще не открытый тогда элемент химики искали среди минералов, содержащих редкоземельные элементы, исходя из неправильной предпосылки, что к лантаноидам следует отнести 15 элементов.

По аналогии с переходными элементами число лантаноидов (элементы № 58–71) должно быть равно разности между максимальными числами электронов на N и М энергетических уровнях
(32 – 18 = 14), т. е. равно максимальному числу электронов на f -подуровне (см. выше п. 19). Элемент с Z = 72 (гафний Hf) является аналогом циркония Zr и был обнаружен в циркониевых рудах.

23. Следующим важным выводом из анализа табл. 6 в п. 20 является вывод о периодичности заполнения электронами внешних энергетических уровней атомов, чем обусловлена периодичность изменения химических свойств элементов и их соединений.

Таблица 6

Электронные конфигурации атомов
первых 20 элементов периодической системы

Атомный
номер
Обоз-
начение
Слой K L M N
n 1 2 3 4
l 0 0, 1 0, 1, 2 0, 1, 2, 3
Подуровень 1s 2s , 2p 3s , 3p , 3d 4s , 4p , 4d , 4f
Число электронов на данном подуровне
1
2
H
He
1
2
3
4
5
6
7
8
9
10
Li
Be
B
C
N
O
F
Ne
2
2
2
2
2
2
2
2
1, 0
2, 0
2, 1
2, 2
2, 3
2, 4
2, 5
2, 6
11
12
13
14
15
16
17
18
Na
Mg
Al
Si
P
S
Cl
Ar
2
2
2
2
2
2
2
2
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
2, 6
1, 0, 0
2, 0, 0
2, 1, 0
2, 2, 0
2, 3, 0
2, 4, 0
2, 5, 0
2, 6, 0
19
20
K
Ca
2
2
2, 6
2, 6
2, 6, 0
2, 6, 0
1, 0, 0, 0
2, 0, 0, 0

Так, второй период таблицы Д.И.Менделеева состоит из восьми элементов со следующими подуровнями:

3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne
1s 2 2s 1 1s 2 2s 2 1s 2 2s 2 2p 1 1s 2 2s 2 2p 2 1s 2 2s 2 2p 3 1s 2 2s 2 2p 4 1s 2 2s 2 2p 5 1s 2 2s 2 2p 6

При переходе от лития к неону заряд ядра атома постепенно увеличивается от Z = 3 до Z = 10, а значит, возрастают силы притяжения электронов к ядру, и в результате радиусы атомов этих элементов уменьшаются. Поэтому способность атома отдавать электроны (типично металлическое свойство), ярко выраженная у атома лития, постепенно ослабевает при переходе от лития к фтору. Последний является типичным неметаллом, т. е. элементом более, чем другие, способным присоединять электроны.

Начиная со следующего за неоном элемента (Na, Z = 11) электронные структуры атомов повторяются, и поэтому электронные конфигурации их внешних электронных оболочек обобзначаются сходным образом (n – номер периода):

ns 1 (Li, Na), ns 2 (Be, Mg), ns 2 np 1 (B, Al), ns 2 np 2 (C, Si) и т. д.

В четвертом периоде таблицы Д.И.Менделеева появляются переходные элементы, принадлежащие побочным подгруппам.

24. Элементы, принадлежащие одной и той же подгруппе, имеют сходный характер расположения электронов на внешних электронных уровнях атомов. Например, атомы галогенов (главная подгруппа VII группы) все имеют электронную конфигурацию ns 2 np 5 , а атомам элементов побочной подгруппы той же группы свойственна электронная конфигурация (n – 1)s 2 (n – 1)p 6 (n – 1)d 5 ns 2 .

В чем заключается суть сходства и различия атомов элементов, принадлежащих разным подгруппам одной и той же группы таблицы Д.И.Менделеева? Свои выводы в дальнейшем сверьте с приложением 1 (П-24).

25. Численное значение валентности атома, определяемое числом образованных им ковалентных химических связей, отражает положение элемента в ПСХЭ Д.И.Менделеева. Во многих случаях валентность атома элемента в соединении численно равна номеру группы в ПСХЭ Д.И.Менделеева. Однако из этого правила существуют исключения. Например, у атома фосфора на внешнем (третьем, М ) энергетическом уровне находятся три неспаренных электрона (3р -орбитали) и свободные валентные ячейки d -орбиталей. Следовательно, для атома фосфора характерно так называемое возбуждение электрона, связанное c распариванием электронной пары и переходом одного их образующихся неспаренных электронов на 3d -орбиталь. Для возбужденного состояния атома фосфора возможно образование пяти ковалентных связей, а для основного – только трех.

Для атома азота возбужденное состояние нетипично, поскольку в этом атоме на внешнем энергетическом уровне количество и состояние электронов такое же, как в атоме фосфора, но вакантных ячеек нет, и для завершения и устойчивости этого уровня недостает всего трех электронов.

Почему же тогда максимальная валентность атома азота в соединениях (т.е. способность к образованию общих электронных пар) все же не III, а IV?

26. Повторив пп. 16, 17 методической разработки, можно объяснить порядок заполнения электронами энергетических уровней в атомах элементов 4-го большого периода ПСХЭ Д.И.Менделеева. Четный ряд этого периода начинается элементами главных подгрупп – 39 К и 40 Са, являющимися типичными металлами с постоянной валентностью, а уже с элемента № 21 (Z = 21, Sс) далее идут элементы побочных подгрупп, называемые d- элементами или переходными. Попробуйте объяснить суть этих названий, привести соответствующие примеры. Правильность своих выводов в дальнейшем сверьте с приложением 1 (П-26).

27. Химический знак водорода Н в ПСХЭ Д.И.Менделеева помещают и в главную подгруппу
I группы, и в главную подгруппу VII группы. Почему это допустимо? Проверьте в дальнейшем правильность своих выводов по приложению 1 (П-27).

Понравилось? Лайкни нас на Facebook