Истинная теплоемкость. Теплоёмкость газов. Зависимость теплоёмкости от температуры и процесса. Истинная и средняя теплоёмкость. Молекулярно-кинетическая теория теплоемкости

ТЕПЛОЕМКОСТЬ , кол-во теплоты, затрачиваемое для изменения т-ры на 1 °С. Согласно более строгому определению, теплоемкость-термодинамич. величина, определяемая выражением:

где D Q- кол-во теплоты, сообщенное системе и вызвавшее изменение ее т-ры на D Т. Отношение конечных разностей D Q/D Т наз. средней теплоемкостью, отношение бесконечно малых величин d Q/dT-истинной теплоемкостью. Поскольку d Q не является полным дифференциалом ф-ции состояния, то и теплоемкость зависит от пути перехода между двумя состояниями системы. Различают теплоемкость системы в целом (Дж/К), удельную теплоемкость [Дж/(г·К)], молярную теплоемкость [Дж/(моль·К)]. Во всех ниже приведенных ф-лах использованы молярные величины теплоемкости.

Методы определения теплоемкости индивидуальных веществ . Осн. эксперим. методом является калориметрия . Теоретич. расчет теплоемкости в-в осуществляется методами статистической термодинамики , но он возможен только для сравнительно простых молекул в состоянии идеального газа и для кристаллов , причем в обоих случаях для расчета требуются эксперим. данные о строении в-ва.

Эмпирич. методы определения теплоемкости в-в в состоянии идеального газа основаны на представлении об аддитивности вкладов отдельных групп атомов или хим. связей. Опубликованы обширные таблицы групповых атомных вкладов в значение С р. Для жидкостей , помимо аддитивно-групповых, применяют методы, основанные на соответственных состояний законе , а также на использовании термодинамич. циклов, позволяющих перейти к теплоемкости жидкости от теплоемкости идеального газа через температурную производную энтальпии испарения .

Для р-ра вычисление теплоемкости как аддитивной ф-ции теплоемкости компонентов в общем случае некорректно, т.к. избыточная теплоемкость р-ра, как правило, значительна. Для ее оценки требуется привлечение молекулярно-статистич. теории р-ров (см. Растворы неэлектролитов). Экспериментально избыточная теплоемкость может быть определена по температурной зависимости энтальпии смешения , после чего возможен расчет С р р-ра.

Т еплоемкость гетерог. систем представляет наиб. сложный случай для термодинамич. анализа. На диаграмме состояния перемещение вдоль кривой равновесия фаз сопровождается изменением и р, и Т. Если в процессе нагрева происходит смещение точки фазового равновесия , то это дает дополнит. вклад в теплоемкость, поэтому теплоемкость гетерог. системы не равна сумме теплоемкостей составляющих ее фаз, но превосходит ее. На фазовой диаграмме при переходе от гомог. состояния к области существования гетерог. системы теплоемкость испытывает скачок (см. Фазовые переходы).

Практическое значение исследований теплоемкости важно для расчетов энергетич. балансов процессов в хим. реакторах и др. аппаратах хим. произ-ва, а также для выбора оптим. теплоносителей . Эксперим. измерение теплоемкости для разных интервалов т-р-от предельно низких до высоких-является осн. методом определения термодинамич. св-в в-в. Для расчета энтальпий и энтропии в-ва (в интервалах от 0 до Т) используют интегралы от теплоемкости.:

к к-рым добавляютсясоответствующие эффекты

На основании опытных данных установлено, что зависи­мость истинной теплоемкости реальных газов от температуры является криволинейной, как показано на рис. 6.6, и может быть выражена степенным рядом с п = а + bt + dt 2 + ef 3 + .... (6.34)

где а, 6, d ,... постоянные ко­эффициенты, численные зна­чения которых зависят от рода газа и характера протекания процесса. В тепловых расчетах часто заменяют нелинейную зависимость теплоемкости от температуры линейной.

В этом случае истинная теплоемкость определяется из

уравнения
(6.35)

где t - температура, °С; b = dc / dt –угловой коэффициент наклона прямой с n = а + bt .

Исходя из (6.20), найдем формулу средней теплоемкости при ее линейном изменении от температуры согласно (6.35)

(6.36)

В случае, если процесс изменения температуры протекает в

интервале О- t , то (6.36) принимает вид
(6.37)

Теплоемкость
называют теплоемкостью средней в

интервале температур
а теплоемкость

- теплоемкостью средней в интервале 0-t .

Результаты расчетов истинной и средней в интервале температур О- t массовой или мольной теплоемкостей при

постоянном объеме и давлении соответственно по уравнениям (6.34)и (6.37) приведены в справочной литературе. Основной тепло- и хладотехнической задачей является оп­ределение теплоты, участвующей в процессе. В соответствии с соотношением q = c n dT и при нелинейной зависимости ис­тинной теплоемкости от температуры количество теплоты оп­ределяется заштрихованной элементарной площадкой на ди­аграмме с координатами с n Т (рис. 6.6). При изменении темпе­ратуры от Т 1 до Т 2 в произвольном конечном процессе количе­ство подводимой или отводимой теплоты определяется, согласно (6.38), следующим образом:

(6.38)

и определяется на той же диаграмме (рис. 6.6) площадью 12T 2 T 1 1. Подставив в (6.38) значение с n =f(T) для данного газа по соотношению (6.34) и произведя интегрирование, получим рас­четную формулу для определения теплоты в заданном интер­вале изменения температуры газа, которая, впрочем, следует из (6.16):

Однако, поскольку в справочной литературе есть только средняя теплоемкость в интервале температур 0-t , то количест­во теплоты в процессе 12 можно определить не только по преды­дущей формуле, но итак: Оче­видно соотношение между теплоемкостями средними в интер­валах температур T 1 - T 2 и 0- t :

Количество теплоты, подводимое (отводимое) к m кг рабо­ чего тела

Количество теплоты, подводимое к V м 3 газа, определяется формулой

Количество теплоты, подводимое (отводимое) к н молям рабочего тела, равно

6.10Молекулярно-кинетическая теория теплоемкости

Молекулярно-кинетическая теория теплоемкости является весьма приближенной, так как не рассматривает колебатель­ной и потенциальной составляющих внутренней энергии. По­этому, согласно этой теории, задача состоит в определении рас­пределения подводимой к веществу тепловой энергии между поступательной и вращательной формами внутренней кинети­ческой энергии. Согласно распределению Максвелла-Больцмана, если системе очень_ большого числа микрочастиц сооб­щить некоторое количество энергии, то она распределяется

между поступательным и вра­щательным движением микро­частиц пропорционально их числу степеней свободы. Число степеней свободы молекулы газа (п. 5.4) соответствует числу ко­ординат, определяющих ее по­ложение в пространстве.

Молекула одноатомного газа имеет три степени, свободы, так как ее положение в простран­стве определяется тремя координатами, причем для одноатом­ного газа эти три степени свободы являются степенями свобо­ды поступательного движения.

Для двухатомного газа значения трех координат одного атома еще не определяют положение молекулы в простран­стве, так как после определения положения одного атома не­обходимо учитывать, что второй атом имеет возможность вра­щательного движения. Для определения положения в простран­стве второго атома необходимо знать две его координаты (рис. 6.7), а третья же определится из известного в аналитической геометрии уравнения

где - расстояние между атомами. Таким образом, при изве­стном из шести координат необходимо знать только пять. Следовательно, молекула двухатомного газа имеет пять степе­ней свободы, из которых три - поступательного и две - вра­щательного движения.

Молекула трехатомного газа имеет шесть степеней свободы - три поступательного и три вращательного движения. Это следует из того, что для определения положения в пространстве необходимо знать шесть координат атомов, а именно: три координаты первого атома, две координаты второго атома и одну координату третьего. Тогда положение атомов в пространстве будет полностью определено, так как расстояния между ними
- заданы.

Если взять газ большей атомности, то есть 4-атомный и более, то число степеней свободы такого газа будет равно так­же шести, так как положение четвертого и каждого следую­щего атома будет определяться фиксированным расстоянием его от других атомов.

Согласно молекулярно-кинетической теории вещества, сред­няя кинетическая энергия поступательного и вращательного движений каждой из молекул пропорциональна температуре

и равна соответственнои
- число степеней сво­боды вращательного движения). Поэтому кинетическая энер­гия поступательного и вращательного движений всех молекул будет линейной функцией температуры

Дж, (6.39)

Дж.

Уравнения (6.39) и (6.40) выражают упомянутый закон равнораспределения энергии по степеням свободы, согласно которому на каждую степень свободы поступательного и вра­щательного движений молекул приходится одна и та же сред­няя кинетическая энергия, равная 1/2 (кТ).

Энергия колебательного движения молекул представляет собой сложную возрастающую функцию температуры и толь­ко в отдельных случаях при высоких температурах может быть приближенно выражена формулой, аналогичной (6.40). Моле­кулярно-кинетическая теория теплоемкости не учитывает ко­лебательного движения молекул.

Между двумя молекулами реального газа действуют силы отталкивания и притяжения. Для идеального газа потенциаль­ная энергия взаимодействия молекул отсутствует. С учетом изложенного внутренняя энергия идеального газа равна U =
.
Так как N = vnN A , то
Внутренняя энергия одного моля идеального газа при условии, что универсальная газовая постоянная определя­ется произведением двух констант:
= kN A , определяется следующим образом:
,Дж/моль.

Продифференцировав по Т и зная, что du/ dT = c r , получим моль­ную теплоемкость идеального газа при постоянном объеме

Коэффициент
называетсякоэффициентом Пуассона или показателем адиабаты.

Для идеального газа показатель адиабаты является вели­чиной, зависящей только от атомного строения молекул газа, что и отражено в табл. 6.1. Символическое значение показате­ля адиабаты можно получить из уравнения Майера с p - c v = R путем следующих преобразований: kc v - c p = R , c v (k - l ) - R , откудa к = 1 + R / c v . Из предыдущего равенства следует выра­жение изохорной теплоемкости через показатель адиабаты cv = =R /(k - 1) и затем изобарной теплоемкости: с р. = kR /(k - 1).

Из уравнения Майера с р =
получим выражение для мольной теплоемкости идеального газа при постоянном давлении
, Дж/(моль-К).

Для приближенных расчетов при не очень высоких темпе­ратурах, когда энергию колебательного движения атомов в молекулах вследствие ее малости можно не учитывать, допус­каются к использованию полученные мольные теплоемкости с v ис p как функции атомности газов. Значения теплоемкостей представлены в табл. 6.1.

Таблиц6.1

Значения теплоемкостей по молекулярно-кинетической теории газов

теплоемкость

Атомность газа

моль-град

моль-град

Одноатомный газ Двухатомный газ Трех- и более атомный газ

12,5 20,8 29,1

20.8 29.1 37.4

1,67 1,40 1,28

Внутренняя энергия системы может изменяться в результате теплообмена. Т.е., если к системе подводится теплота в количестве dQ, а работа не производится dW = 0, то согласно I закона термодинамики

dU = dQ – dW = dQ

Теплота - способ изменения внутренней энергии системы без изменения внешних параметров (dV = 0 ® dW = 0), это микроскопический способ преобразования энергии.

При поглощении системой некоторого количества теплоты dQ внутренняя энергия ее увеличивается на величину dU (согласно формуле (6.32.)). Возрастание внутренней энергии ведет к увеличению интенсив-ности движения частиц, составляющих систему. Согласно выводам статистической физики средняя скорость движения молекул связана с температурой

Т.е. поглощение системой некоторого количества теплоты dQ ведет к увеличению температуры системы на величину dT, пропорциональную dQ.

dT = const . dQ (6.33)

Соотношение (6.33) можно переписать в другом виде:

dQ = C . dT или , (6.34)

где С – константа, называемая теплоемкостью системы.

Итак, теплоемкость – это количество теплоты, необходимое для нагревания термодинамической системы на один градус по шкале Кельвина.

Теплоемкость системы зависит от:

а) состава и температуры системы;

б) размера системы;

в) условий, при которых происходит переход теплоты.




Схема 6.6. Виды теплоемкости

Т.е. С (теплоемкость), как и Q, является функцией процесса, а не состояния и относится к экстенсивным параметрам.

По количеству нагреваемого вещества различают:

1) удельную теплоемкость С уд, отнесенную к 1 кг или 1 г вещества;

2) молярную (мольную) теплоемкость С м, отнесенную к 1 моль вещества.

Размерность {С уд } = Дж/г. К

{С м } = Дж/моль. К

Между удельной и молярной теплоемкостями имеется соотношение

С м = С уд. М, (6.35)

где М – молярная масса.

При описании физико-химических процессов обычно пользуются молярной теплоемкостью С м (в дальнейшем индекс писать не будем).

Различают также среднюю и истинную теплоемкости.

Средняя теплоемкость – это отношение некоторого количества теплоты к разности температур

(6.36)

Истинной теплоемкостью С называют отношение бесконечно малого количества теплотыdQ, которое нужно подвести к одному моль вещества, к бесконечно малому приращению температуры – dT.

Установим связь между истинной и средней теплоемкостями.

Во-первых,

Во-вторых, выразим Q из формулы (6.36) (6.37). С другой стороны из формулы (6.34) ® dQ = CdT (6.38). Проинтегрируем (6.38) в интервале T 1 - T 2 и получим

Приравняем правые части выражений (6.37) и (6.39)

Отсюда (6.40)

Это уравнение связывает среднюю теплоемкость с истинной С.

Среднюю теплоемкость рассчитывают в интервале температур от Т 1 до Т 2 . Нередко интервал выбирают от ОК до Т, т.е. нижний предел Т 1 = ОК, а верхний имеет переменное значение, т.е. от определенного интервала перейдем к неопределенному. Тогда уравнение (6.40) примет вид:

Расчет можно провести графически, если известны значения истинной теплоемкости при нескольких температурах. Зависимость С = f(T) представлена кривой АВ на рис. 1.


Рис. 6.7. Графическое определение средней теплоемкости

Интеграл в выражении (6.40) представляет собой площадь фигуры Т 1 АВТ 2 .

Таким образом, измерив площадь, определяем

(6.42)

Рассмотрим значение теплоемкости системы при некоторых условиях:

Согласно I закону термодинамики dQ V = dU. Для простых систем внутренняя энергия является функцией объема и температуры U = U (V,T)

Теплоемкость в этих условиях

(6.43)

dQ p = dH. Для простых систем H = H(p,T);

Теплоемкость

(6.44)

С р и С V - теплоемкости при постоянных p и V.

Если рассматривать 1 моль вещества т.е. С р и С V - молярные теплоемкости

dQ V = C V dT, dQ p = C p dT (6.45)

Для «n» моль вещества dQ V = nC V dT, dQ p = nC p dT

Исходя из выражения (6.45), находим

(6.46)

Зная зависимость теплоемкости вещества от температуры, по формуле (6.46) можно вычислить изменение энтальпии системы в интервале Т 1 ¸Т 2 . В качестве базовой температуры выбирается Т 1 = ОК или 298,15 К. В этом случае разность энтальпий Н(Т) – Н(298) называется высокотемпературной составляющей энтальпии.

Найдем связь между С р и С V . Из выражений (6.43) и (6.44) можно записать:

Из I закона термодинамики с учетом только механической работы для простой системы, для которой U = U(V,T)

dQ = dU + pdV =

т.е. (6.49)

Подставим dQ из выражения (6.46) в (6.48) и (6.49) и получим:

Для простой системы объем можно рассматривать как функцию давления и температуры, т.е.

V = V(p,T) ® dV =

при условии p = const dp = 0,

т.е.

Отсюда ,

Таким образом (6.51)

Для 1 моль идеального газа pV = RT,

C p – C V =

Для 1 моль реального газа и применение уравнения Ван-дер-Ваальса приводит к следующему выражению:

C p – C V =

Для реальных газов С p – C V > R. Эта разность увеличивается по мере увеличения давления, т.к. с увеличением давления растет , связанное со взаимодействием молекул реального газа друг с другом.

Для твердого тела при обычной температуре С p – C V < R и составляет примерно 1 Дж/(моль. К). с понижением температуры разность С p – C V уменьшается и при Т ® ОК С p – C V ® 0.

Теплоемкость обладает свойством аддитивности, т.е. теплоемкость смеси двух веществ

(6.52)

В общем случае

,

где x i - доля веществ «I» в смеси.

Теплоемкость является одной из важнейших термодинамических характеристик индивидуальных веществ.

В настоящее время имеются точные методы измерения теплоемкости в широком интервале температур. Достаточно удовлетворительно разработана теория теплоемкости для простого твердого вещества при невысоких давлениях. Согласно молекулярно-кинетической теории теплоемкости для одного моль газа на каждую степень свободы приходится R/2. Т.е. поскольку молярная теплоемкость идеального газа при постоянном объеме

C V = C n + C в + C к + С э, (6.53)

где C n – теплоемкость газа, связанная с поступательным движением молекул,

С в – с вращательным,

С к – с колебательным,

а С э – с электронными переходами, то для одноатомного идеального газа С V = 3/2R,

для двухатомных и линейных трехатомных молекул

C V = 5/2R + C к

для нелинейных многоатомных молекул

C V = 3R + С к

Теплоемкость С к, связанная с колебательным движением атомов в молекуле, подчиняется законам квантовой механики и не отвечает закону равномерного распределения энергии по степеням свободы.

С э в формуле (6.53) не принимается во внимание, С э – это теплоемкость, связанная с электронными переходами в молекуле. Переход электронов на более высокий уровень под действием теплообмена возможен лишь при температурах выше 2000 К.

Теплоемкость твердых веществ с атомной кристаллической решет-кой можно вычислить по уравнению Дебая:

C V = C Д (х), ,

где q – характеристическая температура;

n m – максимальная характеристическая частота колебания атомов в молекуле.

При повышении температуры C V твердых веществ с атомной кристаллической решеткой стремится к предельному значению C V ® 3R. При очень низких температурах

C V ~ T 3 (T < q/12).

Теплоемкости С р по опытным значениям C V (или наоборот) для веществ с атомной кристаллической решеткой можно рассчитать по уравнению:

C p = С V (1 + 0,0214C V )

Для сложного твердого или жидкого вещества хорошей теории пока не существует. Если экспериментальные данные по теплоемкости отсутствуют, то ее можно оценить с помощью эмпирических правил

1) Правило Дюлонга и Пти: атомная теплоемкость при постоянном объеме для любого простого твердого вещества приблизительно равна 25 Дж/(моль. К)

Правило выполняется при высоких температурах (близких к температуре плавления твердого вещества) для элементов, атомная масса которых больше, чем у калия. Как показал Больцман, оно может быть качественно обосновано кинетической теорией:

C V » 25 Дж/(моль. К)(3R)

2) Правило Неймана-Коппа (правило аддитивности) основывается на предположении о неизменяемости теплоемкости элементов при образовании химических связей

С св-ва = 25n

где n – число атомов, входящих в молекулу.

Более близкие к экспериментальным значениям теплоемкости получаются по правилу Неймана-Коппа, если принять для легких элементов значения атомных теплоемкостей представленные в табл. 6.1.

Таблица 6.1.

Значения атомных теплоемкостей для легких элементов

Для остальных элементов C p 0 » 25,94 Дж/(моль. К).

3) Правило аддитивности лежит в основе формулы Келли, которая справедлива для высококипящих чистых неорганических жидкостей (BeO, BeCl 2 , MgBr 2 и др.):

где n – число атомов в молекуле, входящих в молекулу неорганического вещества.

У расплавленных элементов с d- и f-электронами С ат достигает 42¸50 Дж/(моль. К).

4) Приближенный метод расчета для органических жидкостей, использующий атомно-групповые составляющие теплоемкостей

Последние получены при анализе опытных данных большого числа соединений, некоторые из которых сведены в табл. 6.2.

Таблица 6.2.

Некоторые значения атомно-групповых составляющих теплоемкостей

Атом или группа С р, Дж/(моль. К) Атом или группа С р, Дж/(моль. К)
–СН 3 41,32 –О– 35,02
–СН 2 – 26,44 –S– 44,35
СН– 22,68 –Cl 35,98
–СN 58,16 –Br 15,48
–ОН 2 46,02 C 6 H 5 – 127,61
С=О(эфиры) 60,75 –NH 2 (амины) 63,6
С=О(кетоны) 61,5 –NO 2 64,02

Зависимость теплоемкости от температуры

Теплоемкость твердых, жидких и газообразных веществ повышается с температурой. Только теплоемкости одноатомных газов практически не зависят от Т (например, He, Ar и другие благородные газы). Наиболее сложная зависимость С(Т) наблюдается у твердого вещества. Зависимость С(Т) изучается экспериментально, т.к. теория недостаточно разработана.

Обычно зависимость атомной и молярной теплоемкости от температуры выражается в виде интерполяционных уравнений.

С р = а + в. Т + с. Т 2 (для органических веществ) (6.53)

С р = а + в. Т + с / . Т -2 (для неорганических веществ)

Коэффициенты а, в, с, с / - постоянные величины, характерные для данного вещества вычисляются на основании экспериментальных данных и справедливы в определенном интервале температур.

Опытные значения теплоёмкостей при различных температурах представляются в виде таблиц, графиков и эмпирических функций.

Различают истинную и среднюю теплоемкости.

Истинная теплоемкость C-это теплоемкость для заданной температуры.

В инженерных расчетах часто используется среднее значение теплоемкости в заданном интервале температур (t1;t2).

Средняя теплоемкость обозначается двояко: ,.

Недостаток последнего обозначения является незаданность диапазона температур.

Истинная и средняя теплоемкости связаны соотношением:

Истинная теплоемкость-это предел, к которому стремится средняя теплоемкость, в заданном диапазоне температур t1…t2, при ∆t=t2-t1

Как показывает опыт, у большинства газов истинные теплоемкости возрастают с ростом температуры. Физическое объяснение этого возрастания заключается в следующем:

Известно, что температура газа не связана колебательным движением атомов и молекул, а зависит от кинетической энергии E k поступательного движения частиц. Но по мере роста температуры подводимая к газу теплота всё более и более перераспределяется в пользу колебательного движения, т.е. рост температуры при одинаковом подводе теплоты по мере роста температуры замедляется.

Типичная зависимость теплоемкости от температуры:

c=c 0 + at + bt 2 + dt 3 + … (82)

где c 0 , a, b, d – эмпирические коэффициенты.

c – Истинная теплоёмкость, т.е. значение теплоёмкости для заданной температуры T.

Для теплоемкости битоппроксимирующей кривой- это полином в виде ряда по степеням t.

Аппроксимирующая кривая проводится с использованием специальных методов, например, методом наименьших квадратов. Суть этого метода в том, что при его использовании все точки примерно равноудалены от аппроксимирующей кривой.

Для инженерных расчётов, как правило, ограничиваются двумя первыми слагаемыми в правой части, т.е. полагают зависимость теплоёмкости от температуры линейной c=c 0 + at (83)

Средняя теплоемкость графически определяется как средняя линия заштрихованной трапеции, как известно средняя линия трапеции определяется как полусумма оснований.

Формулы применяются, если известна эмпирическая зависимость.

В тех случаях, когда зависимость теплоёмкости от температуры не удаётся удовлетворительно аппроксимировать к зависимости c=c 0 +at, можно воспользоваться следующей формулой:

Эта формула применяется в тех случаях, когда зависимость c от t существенно нелинейна.

Из молекулярно-кинетической теории газов известно

U  = 12,56T ,U  - внутренняя энергия одного киломоля идеального газа.

Ранее было получено для идеального газа:

, ,

Из полученного результата следует, что теплоемкость, полученная с использованием МКТ, от температуры не зависит.

Уравнение Майера: c  p -c  v =R  ,

c  p =c  v +R  =12,56+8,31420,93.

Как и предыдущем случае по МКТ газов молекулярная изобарная теплоемкость от температуры не зависит.

Понятию идеального газа в наибольшей степени соответствуют одноатомные газы при малых давлениях, на практике приходится иметь дело с 2-х, 3-х … атомными газами. Например, воздух, который по объёму состоит из 79% азота (N 2), 21% кислорода (O 2) (в инженерных расчетах инертные газы не учитываются в силу малости их содержания) .

Можно для оценочных расчётов пользоваться следующей таблицей:

одноатомный

двухатомный

трехатомный

У реальных газов, в отличие от идеального, теплоёмкости могут зависеть не только от температуры, но и от объёма и давления системы.

Теплоемкость – теплофизическая характеристика, которая определяет способность тел отдавать или воспринимать теплоту, чтобы изменять температуру тела. Отношение количества теплоты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):C=dQ/dT, где - элементарное количество теплоты; - элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Единицей теплоемкости будет Дж/К.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость - это теплоемкость, отнесенная к единице массы рабочего тела,c=C/m

Единицей измерения массовой теплоемкости является Дж/(кг×К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость - теплоемкость, отнесенная к единице объема рабочего тела, где и - объем и плотность тела при нормальных физических условиях. C’=c/V=c p . Объемная теплоемкость измеряется в Дж/(м 3 ×К).

Мольная теплоемкость - теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,C m =C/n, где n - количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль×К).

Массовая и мольная теплоемкости связаны следующим соотношением:

Объемная теплоемкость газов выражается через мольную как

Где м 3 /моль - мольный объем газа при нормальных условиях.

Уравнение Майера: С р – С v = R.

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как C(t), а удельную – как c(t). Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считать C(t) истинной теплоёмкостью термодинамической системы при температуре системы равной t 1 , а c(t) - истинной удельной теплоёмкостью рабочего тела при его температуре равной t 2 . Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры от t 1 до t 2 можно определить как



Обычно в таблицах приводятся средние значения теплоемкости c ср для различных интервалов температур, начинающихся с t 1 =0 0 C. Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур от t 1 до t 2 , в котором t 1 ≠0, количество удельной теплоты q процесса определяется с использованием табличных значений средних теплоемкостей c ср следующим образом.

Понравилось? Лайкни нас на Facebook