Основные поглотители и источники углекислого газа в атмосфере нашей планеты. Почему выбросы CO2 — возможно, не самая большая проблема с климатом Взаимодействие с океаном

В цивилизованных странах показатель выбросов двуокиси углерода в последние три-четыре года вошел в число основных характеристик автомобиля. Ирония в том, что сократить количество вылетающего из трубы углекислого газа можно лишь одним путем - урезать аппетит двигателя. Ведь масса выплюнутого автомобилем CO2 и литры съеденного топлива напрямую зависят друг от друга.

Поэтому на передовой в войне с опасным врагом стоят отряды мотористов и инженеров автомобильных компаний. Основные средства борьбы за чистоту выхлопа известны еще с середины 90-х годов прошлого века: изменяемые фазы газораспределения, впускные тракты с изменяемой длиной, облегченные детали и узлы, не говоря уже о различных материалах и технологиях, снижающих потери на трение. Кроме того, по оценкам инженеров компании «Бош», выпускающей топливную аппаратуру для большей части европейских моделей, одно только взаимодействие турбонаддува (или механического нагнетателя) с непосредственным впрыском снижает вредные выбросы на величину до 4%. А если взять эту парочку и снять ту же мощность с меньшего объема (популярный нынче принцип даунсайзинга), то выбросы можно сократить на треть.

«Если машина не может коптить, то и ехать не может», - радостно констатировал главный герой чешского мультфильма «Крот в городе», закупоривая сардельками выхлопные трубы. Действительно, самый дешевый и действенный способ снизить выбросы углекислого газа - заглушить двигатель. Сейчас за водителя это делает электроника. Например, система «старт-стоп», которой оснащают уже не только дорогие модели, выключает мотор на светофорах, снижая выбросы на 4–8%. Различные гибридные схемы вносят еще более ощутимый вклад - аж до 25% в определенных режимах движения. Наконец, двигатель можно заглушить частично. Отключение половины цилиндров до недавнего времени было прерогативой многоцилиндровых V-образных двигателей, но такую систему начинают устанавливать и на более компактные моторы. Например, концерн «Фольксваген» оснастил ею новые «четверки» с турбонаддувом.

Впрочем, экономить топливо и снижать выбросы можно, улучшая и другие показатели. Подсчеты конструкторов показывают, что снижение коэффициента аэродинамического сопротивления всего на 0,02 экономит 0,4 л/100 км при скорости 130 км/ч. Применительно к CO2 получается 3–6%. Еще столько же спишут шины с пониженным сопротивлением качению. Недаром именно такими оснащают все модели из экономичных линеек вроде «Блюэффишнс» у «Мерседес-Бенца» и «Блюмоушн» у «Фольксвагена».

В итоге новое поколение машин по сравнению с предшественниками на 13–30% экологичнее и экономичнее. По крайней мере, так утверждают производители. Автомобили с литровыми двигателями уже перешагнули психологическую черту выбросов CO2 в 100 г/км или вплотную приблизились к ней. И это без гибридных технологий, сулящих большую выгоду.

Есть у этой медали и неприглядная сторона: расплачиваться за все достижения придется потребителю. Во-первых, при покупке - производителю охота вернуть сумму, потраченную на разработку, внедрение и производство всех ноу-хау. Во-вторых, частенько и в ходе эксплуатации. Увы, надежность не самая сильная сторона современных автомобилей. А ведь даже некрупный ремонт порой больно бьет по карману. Помнят ли об этом те, кто неутомимо ужесточает нормы выбросов?

НЕ БЕНЗИНОМ ЕДИНЫМ

С точки зрения выбросов СО2 все виды автомобильного топлива предпочтительнее бензина. Даже более «грязная» (как полагают многие) солярка: легковые турбодизели, особенно большого объема, сдержаннее бензиновых моторов сопоставимой мощности на 5–15%. Но это не повод призывать к скорейшей дизелизации. Иначе возникнут проблемы со сбытом горючего, ведь при переработке нефти получается примерно равное количество бензина и дизтоплива. Кроме того, по выбросам сажи ДТ впереди планеты всей.

Альтернативные виды топлива менее щедры на выброс СО2 (г/км), чем давно знакомый бензин. Но у каждого есть как плюсы, так и минусы. За основу при расчетах немецкие исследователи взяли атмосферный двигатель со средним расходом 7 л/100 км:

Другая альтернатива - биотопливо. Вдумайтесь: двигатель, работающий на биометане, выделяет СО2 примерно в 30 раз меньше, чем бензиновый (ЗР, 2012, № 4 ). Весомое преимущество! Однако массовое применение сдерживает неразвитая инфраструктура, а вкладываться в ее развитие никто не спешит. Вдобавок производство биодизельного топлива ограничено посевными площадями, на которых выращивают сырье.

Наконец, самое модное направление - использование электричества. Сюда направляют больше всего средств, а стоит ли? Выработка электрической энергии одаривает природу углекислым газом в два-три раза щедрее, чем весь транспорт, вместе взятый! Даже маленький «Смарт» с электрическим двигателем, если высчитать вред от потребляемой им электроэнергии, выделяет 71 г/км СО2. Немало, учитывая размеры машины! Так что агитировать за массовый и быстрый переход на электротягу, пожалуй, рановато. По крайней мере, пока большую часть энергии не будут вырабатывать возобновляемые источники вроде ветряков или солнечных батарей.

Примерные доли эмиссии СО2, приходящиеся на различные источники. Они зависят от уровня развития конкретной страны:

ПОД ПРИСМОТРОМ СТАРШИХ

В Европе автомобилям разрешено выбрасывать 130 г/км CO2 (в среднем по модельному ряду для каждого производителя). Норма действует до 2015 года, а к 2020-му порог снизят до 95 г/км. Однако роль государства не ограничивается лишь введением более строгих экологических норм. Оно должно стимулировать граждан покупать новые автомобили, которые извергают значительно меньше вредных газов. Например, за 15 лет БМВ 7-й серии при прежней мощности двигателя стал чадить на треть скромнее. Наряду с кнутом, каким служат высокие налоги на старые машины, есть и пряник: программа утилизации при поддержке правительства.

Другое направление деятельности государства помимо гораздо больших финансовых затрат требует и привлечения грамотных специалистов - это планирование дорожной сети. Автомобиль на крейсерской скорости выбрасывает гораздо меньше СО2, чем толкающийся в многокилометровых заторах. В идеале надо закладывать новые трассы на ранних стадиях застройки, но иногда приходится вписывать дорогу в уже существующую инфраструктуру. И как ни дико это звучит, лучшим выходом для экологии может иногда стать вырубка леса под новую магистраль.

Полсотни квадратных метров леса нейтрализуют углекислый газ от дыхания одного человека. В пробке на этой же площади помещаются три легковые машины, источающие двуокись углерода в самом неэкономичном режиме. Получается, вырубка деревьев - порой логичный и разумный способ снизить выбросы парниковых газов:

Как видите, существует множество вариантов для снижения выбросов этого парникового газа. Важно выбрать решения, которые будут не только красивыми, но и по-настоящему действенными. Только тогда удастся сберечь и деньги, и здоровье.

Двуокись углерода (CO2) – это бесцветный газ, который присутствует в воздухе. Хотя выбросы происходят из многих природных источников, проблематичным является CO2, производимый в результате технологических процессов. Например, сжигание ископаемого топлива и выбросы электростанций вредят окружающей среде нашей планеты и существенно влияют на изменение климата. Поэтому очень важно стремиться максимально уменьшить выбросы этого газа.

Сократить объемы автомобильных выхлопов

Одним из крупнейших производителей CO2, насыщающих нашу атмосферу, являются автомобили, на которых многие из нас ездят каждый день. Это – второй по величине источник углекислого газа, на который приходится 31 процент общего объема выбросов. Однако эта проблема связана не только с личными транспортными средствами. Все, что работает на бензиновом или дизельном двигателе, выбрасывает в атмосферу двуокись углерода.

Лучший способ решить эту проблему – снизить объемы CO2, производимые вашим автомобилем. Вы можете воспользоваться одной машиной с коллегами или друзьями или общественным транспортом. Таким образом число автомобилей, ездящих по улицам, сократится

Уменьшить потребление энергии

При производстве электроэнергии вырабатывается в целом больше углекислого газа, чем от авто. Многие из наших электростанций сжигают ископаемое топливо для выработки энергии, которую мы используем. Очевидно, чем больше электричества мы потребляем, тем больше энергии нужно производить.

Делайте акцент на покупку энергосберегающих приборов и всегда ищите новые способы сбережения энергии.

Сократить количество отходов

Промышленность задействует огромные объемы энергии для производства всего, что мы используем в нашей повседневной жизни. Из этого следует, что, если мы сможем переработать наши отходы, потребуется меньше энергии для производства новых материалов. Обязательно всегда сдавайте в переработку все, что можете, от бумаги и пластика до батарей.

Восстановить природные ресурсы

Океаны играют жизненно важную роль в поглощении углекислого газа, присутствующего в атмосфере. Поскольку поглощение диоксида углерода океаном является медленным процессом и может занимать сотни лет, это явление не может обезвредить то огромное количество газа, которое выбрасывается каждый день.

Тем не менее, растения и деревья также используют углекислый газ во время фотосинтеза для производства кислорода. Мы не можем увеличить площадь океанов на планете, однако в наших силах стремиться к восстановлению и сохранению лесов для большей переработки вредного газа.

Другие решения

Есть и другие вещи, которые можно сделать, чтобы помочь улучшить ситуацию с углекислым газом, даже если они непосильны одному обычному человеку. Например, как общество, мы должны продолжать стремиться к совершенствованию технологий на наших электростанциях, чтобы потребление энергии не приводило к таким большим выбросам углекислого газа.

Казалось бы, вклад одного человека не столь существенен, но если каждый из нас сделает все возможное, это в конечном итоге приведет к значительному улучшению окружающей среды.

> Выбросы углекислого газа

Несмотря на то, что предельно допустимая норма выбросов углекислого газа для промышленных производств считается 5000 ррм для 8 рабочих часов при 40-часовой рабочей неделе, ни один человек не сможет выдержать такой уровень СО2 в атмосфере 24 часа в сутки 365 дней в году на протяжении всей своей жизни, а также ни один человек не сможет произвести на свет потомство в таких условиях. Этот уровень относится к рабочим, которые заняты на пивоварнях и в теплицах, где уровень СО2 специально устанавливается в пределах 900 ррм.

Последние исследования влияния СО2 на метаболизм человека показывают, что безопасный уровень углекислого газа требует пересмотра, особенно принимая во внимание тот факт, что угольная кислота участвует в виде свободной кислоты в сыворотке крови, которая является щелочной жидкостью. Выбросы углекислого газа в атмосфере, при котором человечество может выжить, значительно ниже, чем предполагалось. В основе воздуха должен быть кислород, а не диоксид углерода. Рассчитанный токсичный уровень углекислого газа в атмосфере, при котором человек может жить всю жизнь - 426 ррм.

Под влиянием углекислого газа происходит снижение величины pH в сыворотке крови, что ведет к ацидозу. Минимальным эффектом последствием ацидоза является состояние перевозбуждения и умеренная гипертензия. По мере возрастания степени ацидоза появляется сонливость и состояние беспокойства.

Одним из следствий этих изменений является уменьшение желания проявлять физическую активность и получать от этого удовольствия. Другие последствия влияния на метаболизм описаны в литературе. Эмбриональные ненормальности становятся также возможными, т.к. увеличение содержания углекислого газа в атмосфере влияет на метаболизм матери и ее потомства.

Токсичный атмосферный уровень

При концентрации СО2 600 ppm в помещении люди начинают чувствовать признаки ухудшения качества воздуха. Когда в основе воздуха большая концентрация СО2, некоторые люди начинают испытывать один из классических симптомов отравления углекислотой, таких как проблемы с дыханием, учащенный пульс, головная боль, снижение слуха, гипервентиляция, потливость, усталость. При уровне 1000 ppm почти все из находящихся в помещении испытывают те или иные симптомы, описанные выше. Предполагается, что человек подвергается влиянию высокого уровня СО2 некоторое время, а не всю свою жизнь. В настоящее время можно избавиться от всех этих симптомов, просто выйдя на свежий воздух.

В случае, если уровень выбросов углекислого газа в атмосфере достигнет 600 ppm, вся планета будет иметь атмосферу, похожую на душную комнату. О гигиене воздуха можно будет забыть, условия в помещениях существующих ныне зданий станут еще более неприятными, т.к. уровень СО2 легко достигнет 1000 ppm и выше.

В странах, где широко используется биомасса для отопления, оценка воздуха в помещении довольно низка, так как уровень углекислого газа в помещении не опускается ниже 500 ppm. Этот уровень СО2 вызовет изменения в метаболизме, как предполагается, такие как снижение рН сыворотки крови, что приведет к широкому распространению ацидоза. Это, в свою очередь, увеличит чувствительность к другим негативным факторам.

Приматы очень восприимчивы к высокому уровню углекислого газа в атмосфере, это подтверждается геологически-палеонтологическими исследованиями. Во время эпохи эоцена температура на земле была значительно выше, чем сейчас, в то время как уровень СО2 в атмосфере был приблизительно такой же, как сейчас. Окаменелости показывают, что приматы обильно населяли евразийский континент в эпоху эоцена.

Геологические раскопки показывают, что с тех пор количество выбросов углекислого газа в атмосферу увеличилось в три раза, и практически все приматы с Евразийского континента исчезли.

Из этого можно сделать вывод, что приматы могут жить в жарком климате, но не могут выносить высокого уровня углекислого газа в атмосфере. Ни люди, ни млекопитающие не смогут приспособиться к высокому уровню углекислого газа в атмосфере. Было установлено в течение многих десятилетий, что люди и млекопитающие вообще не могут адаптироваться к длительному вдыханию токсичных веществ.

Основным загрязнителем атмосферы является СО 2 , образующийся в результате сжигания органического топлива при выработке электроэнергии и тепла. Для комплексной оценки общей нагрузки на окружающую среду от строительства объектов жилищно-гражданского назначения необходимо оценить уровень вредного воздействия эмиссии углекислого газа (СО 2) в атмосферу на отдельных этапах жизненного цикла здания, а именно: производство строительных материалов, возведение объекта, эксплуатация, реконструкция и снос. В связи с обширностью данного вопроса, оценим уровень неблагоприятного воздействии на стадии эксплуатации, как наиболее продолжительного периода жизненного цикла, объектов строительства г. Красноярска.

Расчеты выбросов углекислого газа (СО 2) лучше всего поддаются контролю, поскольку они базируются на уравнении окисления углерода:

С + О 2 = СО 2

или в молярных массах: 12 + 2 * 16 = 12 + 16 * 2 = 44

Следовательно, на 12 молярных масс углерода приходится 44 массы двуокиси углерода. Соответственно, на одну молярную массу углерода приходится массы двуокиси углерода, т.е. на каждую сожженную тонну углерода выбрасывается или примерно 3,67 т двуокиси углерода.

Формулой для расчета выбросов СО 2 , образующегося при сжигании органического топлива за определенный период времени является формула (1):

– объем годового выброса СО 2 , т.;

– масса сожженного топлива, т.;

– низшая теплотворная способность данного вида топлива, ГДж.;

– коэффициент выбросов углерода для данного вида топлива т С/Гдж.;

– коэффициент фракции окисленного углерода для данного вида топлива;

– коэффициент преобразования углерода в диоксид углерода, равный 44/12, или 3,67.

При анализе вредного воздействия на этапе эксплуатации в расчетах используются различные виды топлива. В таблице 1 представлены, подготовленные Межправительственной группой экспертов по изменению климата (МГЭИК), коэффициенты выбросов углерода, выделяемого при сжигании различных видов топлив , коэффициенты низшей теплотворной способности и удельной теплоты сгорания отдельных видов топлив.

Таблица 1.

Расчетные коэффициенты

Виды топлива

Коэффициент выбросов С, т С/ГДж

Фракция окисленного С

Коэффициенты низшей теплотворной способности, ГДж/ед

Удельная теплота сгорания, КДж/кг

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

Подставив данные в формулу (1) получаем результаты по объемам выбросов двуокиси углерода при сжигании 1 т топлива (табл. 2).

Таблица 2.

Количество выбросов СО 2 в атмосферу при сжигании топлива

Виды топлива

Объем топлива

Объем выброса СО 2 , т

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

Объем топлива, требуемого для отопления жилого дома определяется по формуле (2):

где – количество выделившейся теплоты (МДж),

q - удельная теплота сгорания, табл. 20 (МДж/кг),

m - масса сгоревшего топлива (кг).

На основании полученных данных можно оценить нагрузку на окружающую среду от эксплуатации данного объекта недвижимости за весь расчетный период по формуле (3):

, (3)

где – общий объем выброса СО 2 , т.;

Q co2 – объем годового выброса СО 2 , т.;

m – масса сгоревшего топлива, т.

В работе проведена оценка нагрузки на окружающую среду от эксплуатации следующих объектов жилищно-гражданского назначения:

  1. Многоэтажный жилой дом №12 в микрорайоне «Белые росы» в районе Абаканской протоки, жилого района «Пашенный», Свердловского района г. Красноярска (далее – Объект №1):
  • 24-этажное здание;
  • конструктивное решение – кирпичное;
  1. Комплекс многоэтажных жилых домов 5-го микрорайона жилого района «Нанжуль-Солнечный» по адресу: г. Красноярск, жилой массив индивидуальной застройки «Нанжуль-Солнечный», уч. №ХХI. Жилой дом №6 (далее – Объект №2):
  • 10-этажное здание;
  • каркасное конструктивное решение;
  • класс энергетической эффективности – В «Высокий».
  1. 1-й квартал V микрорайона жилого массива «Слобода Весны». IV очередь строительства: 5 этап - многоэтажный жилой дом №4.2 со встроенными нежилыми помещениями и инженерным обеспечением (далее – Объект №3):
  • 26-этажное здание;
  • конструктивное решение – монолитно-каркасное;
  • класс энергетической эффективности – В «Высокий».
  1. 1-й квартал V микрорайона жилого массива «Слобода Весны». IV очередь строительства: 4-й этап - многоэтажный жилой дом №4.3 со встроенными нежилыми помещениями и инженерным обеспечением», почтовый адрес - г. Красноярск, ул. 9 Мая, 83 (далее – Объект №4):
  • 26-этажное здание;
  • конструктивное решение - монолитный железобетон с несущими поперечными и продольными стенами;
  • класс энергетической эффективности – В «Высокий».

За расчетный период примем минимальный срок эксплуатации объектов жилищно-гражданского назначения – 50 лет.

Исходные данные принимаем согласно фактическим данным энергетического паспорта каждого объекта. Информация по потребности в тепловой энергии приведена в сводной таблице 3.

Таблица 3.

Расчетные характеристики энергетических паспортов

Обозначение и ед. изм. параметра

Объект №1

Объект №2

Объект №3

Объект №4

Расход тепловой энергии за отопительный период

Отапливаемая площадь

A h , м 2

Расход тепловой энергии за отопительный период на 1 м 2

q h y ,

На основании исходных данных по формуле (2) определим кол-во необходимого топлива на отопление помещений рассматриваемых объектов жилищно-гражданского назначения в течение расчетного периода - 50 лет (табл. 4).

Таблица 4.

Потребность в топливе для отопления объектов

Наименование расчетных параметров

Объект №1

Объект №2

Объект №3

Объект №4

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

На основании данных таблиц 2, 4 определим нагрузку на окружающую среду от эксплуатации объектов жилищно-гражданского назначения за весь расчетный период по формуле (3).

Т.к. рассматриваемые объекты недвижимости имеют различную площадь, для проведения сравнительной характеристики приведем полученные данные по выбросам СО 2 к единообразию, т.е. определим кол-во выделенного СО 2 за расчетный период на 1 м 2 , результаты представлены в таблице 6.

Таблица 6.

Объемы выбросов СО 2 от сжигания топлива на стадии эксплуатации объектов недвижимости за 50 лет на 1 м 2

Наименование расчетных параметров

Объект №1

Объект №2

Объект №3

Объект №4

Уголь каменный

Уголь бурый

Брикеты угольные

Природный газ

Дизельное топливо

Наибольшие теплопотери приходятся на объект №2 (рис.1) (Комплекс многоэтажных жилых домов 5-го микрорайона жилого района «Нанжуль-Солнечный» по адресу: г. Красноярск, жилой массив индивидуальной застройки «Нанжуль-Солнечный», уч. №ХХI. Жилой дом №6), в результате чего требуется больше энергии и топлива для отопления 1м 2 на протяжении периода эксплуатации объекта, и, как следствие, наибольшее количество выбросов двуокиси углерода в атмосферу.

Рисунок 1. Объем выделения СО 2 на стадии эксплуатации объектов недвижимости за 50 лет на 1 м 2

Таким образом, в результате проведенных расчетов наиболее экологически чистым топливом для отопления жилого дома является природный газ. При отоплении природным газом выделяется СО 2 почти в половину меньше от количества выделяемого СО 2 при отоплении бурым углем.

Список литературы:

  1. Белоусов, В. Н. Энергосбережение и выбросы парниковых газов (СО2): уче. пособие/ В. Н. Белоусов, С. Н. Смородин, В. Ю. Лакомкин. – Санкт –Петербург, 2014. – 53 с.
  2. ГОСТ Р 54257-2010. Надежность строительных конструкций и оснований. Основные положения и требования – Введ. 01.09.2011. – Москва: Стандартинформ, 2011. – 14 с.
  3. Жусип, Ж. А. Оценка загрязнения окрестностей города Алматы при сжигании угля [Электронный ресурс] / Ж. А. Жусип, А. В. Омарова // Научное сообщество студентов XXI столетия. – 2013. – № 12..
  4. РНД Методические указания по расчету выбросов парниковых газов от тепловых электростанций и котельных Введ. 2010. – Астана, 2010. – 15 с.

Закончился 2018 год и по данным Национального управления океанических и атмосферных исследований в начале 2019 года средний уровень углекислого газа в атмосфере земли находится на уровне 409 ppm.

На графике показана среднесуточная концентрация CO 2 в четырех базовых обсерваториях Отдела глобального мониторинга; Барроу, Аляска (синим цветом ), Мауна-Лоа, Гавайи (красным цветом ), Американское Самоа (зеленым цветом ) и Южный полюс Антарктиды (желтым цветом ). Толстая черная линия представляет среднее значение сглаженных, не сезонных кривых для каждой записи. Эта линия тренда является очень хорошей оценкой глобальных средних уровней CO 2 . Тренд графика является восходящим, а это значит, что в 2019 году мы увидим новую вершину значений концентрации диоксида углерода на планете.

Итоги 2018 по диоксиду углерода

Сайт Global Carbon Budget (Глобальный углеродный бюджет) сделал инфографики оборота CO 2 в атмосфере земли на конец 2018 года.

Согласно предоставленной информации глобальные выбросы CO 2 в 2018 году составили порядка 37,1 Гигатонн диоксида углерода. Это приблизительно на 2,7% больше чем в прошлом году. Есть небольшая вариативность значений от 1,8% до 3,7%, связанна она со сложными подсчетами глобального оборота углекислоты в атмосфере земли.

Какие страны выбрасывают больше всего CO 2 ?

Стоит заметить существенную тенденцию к увеличению выбросов, начиная с 1960 года. Более детально были рассмотрены . Мы же с вами рассмотрим список основных стран — поставщиков этого газа в воздух нашей планеты.

В 1960 году, как и следовало ожидать, лидирующие позиции занимали США, Россия и Германия. Здесь есть небольшой нюанс – указана только Россия без стран, которые входили в состав СНГ, например Украина и Казахстан. Далее на 4 месте шел Китай, потом страны Европы, Востока и т.д. Количество выбросов в 1960 год составило порядка 9411 Мегатонн (9,4 Гт)

В 2017 году ситуация кардинально поменялась, в лидеры вырвался Китай со своей промышленностью.

Китай – это дешевая рабочая сила. Многие корпорации осуществили перевод своих производственных мощностей в эту страну, дополнительно решив проблему налогов на выбросы. Да и сам Китай за последнее время очень сильно поднялся в плане производства и торговли с другими странами.

2 и 3 места занимают США и Индия соответственно. Последняя страна догнала почти Китай по количеству населения, также дешевая рабочая сила привлекает туда инвесторов со своим производством. 4 место занимает Россия, после нее Япония, затем Германия и т.д. Количество выбросов возросло до 36153 Мегатонн (36,1 Гт).

Куда девается CO 2 , когда попадает в атмосферу?

Ответ сам по себе очевиден читателю этого сайта, он остается в атмосфере земли и накапливается в ней,

Выбросы от сжигания угля, газа и нефти составляют приблизительно 34 Гт CO 2 в год. Прибавляем сюда лесные пожары, вырубку лесов и создание пастбищ, получаем еще 5 Гт CO 2 . Очень странно смотреть теперь на вулканические выбросы, которые составляют всего лишь 500 Мт (0,5Гт) диоксида углерода, в расчетах мы их не учитываем из-за непостоянства. За годовой период растения на суше поглощают 12 Гт, океан же немного меньше – 9 Гт. Еще 700 Мегатонн уходит на углеродные циклы над водой и сушей, в итоге получаем прибавку в углекислом газе на +17,3 Гт в год. Тенденция идет к увеличению, никто не собирается заключать договоры на ограничение выбросов газа.

Заключение

В заключение предлагаю посмотреть на видео, как менялось значение диоксида углерода в течение 800.000 лет, сначала авторы из NOAA сделали записи по приборам. При обратной обмотке графика для определения содержания углекислоты в воздухе использовались данные, полученные из кернов-образцов льда, взятых в Антарктике.

Понравилось? Лайкни нас на Facebook