Разделы

Авто
Бизнес
Болезни
Дом
Защита
Здоровье
Интернет
Компьютеры
Медицина
Науки
Обучение
Общество
Питание
Политика
Производство
Промышленность
Спорт
Техника
Экономика

Идентификация моделей с помощью регрессионного метода

Регрессионный анализ представляет собой классический статистический метод. Благодаря своим широким возможностям регрессионные методы давно и успешно используются в инженерной практике. В последнее время в связи с развитием и внедрением быстродействующих ЭВМ они широко используются для идентификации моделей, в том числе для идентификации динамических, многомерных процессов, систем диагностики и управления в реальном масштабе времени. Регрессионный анализ основывается на двух главных принципах.

1. Методы применяются для линейных по идентифицируемым параметрам моделям. Структура математической модели процесса представляется функцией вида:

 

, (6.2)

 

где аi – i-тый оцениваемый параметр; fi- i-тая известная функция, - вектор входных воздействий, y– выходная переменная.

Возможно представление идентифицируемой модели в следующей форме:

(6.3)

 

где аi, bj – оцениваемые параметры; fiи - априори известные (заданные) функции. После несложных математических преобразований на основе этих функций можно формировать невязки, линейно зависящие от идентифицируемых параметров аi, bj.

На практике, чаще всего в качестве fi и выбираются степенные функции, а соответственно выражения (6.2) и (6.3) являются полиномиальными, либо дробно-рациональными зависимостями. При этом точность описания достигается увеличением числа членов полинома, обеспечивающих их сходимость к реальному процессу. Заметим, что получающаяся модель практически никогда не соответствует физической сущности моделируемого реального процесса, его истинному виду, однако инженерная простота вычислений, удобство практического использования модели, возможность получения результата без «особых размышлений» служит основной причиной широкого распространения на практике регрессионных методов.

Естественно, и в этом случае с помощью удачно выбранного вида полинома можно существенно сократить размер модели, а значит и трудоемкость вычислительного процесса, как при идентификации, так и при использовании модели.

2. Минимизируемой функцией ошибки (разности между прогнозируемой моделью и данными эксперимента) при регрессионном анализе является сумма квадратов ошибок. Благодаря этому удается применить метод наименьших квадратов, математический аппарат которого предельно прост, а вычислительные методы сводятся к методам линейной алгебры.

Регрессионные модели могут быть как линейными, так и нелинейными с любым числом входов и выходов.

Дата публикации:2014-01-23

Просмотров:509

Вернуться в оглавление:

Комментария пока нет...


Имя* (по-русски):
Почта* (e-mail):Не публикуется
Ответить (до 1000 символов):







 

2012-2018 lekcion.ru. За поставленную ссылку спасибо.