Разделы

Авто
Бизнес
Болезни
Дом
Защита
Здоровье
Интернет
Компьютеры
Медицина
Науки
Обучение
Общество
Питание
Политика
Производство
Промышленность
Спорт
Техника
Экономика

Скорость сложной химической реакции

Моделирование кинетики системы сложных химических реакций рассмотрим на следующем примере. Пусть имеется технологический процесс, суть которого отображается следующими химическими реакциями:

k1; 1 по В

A + 2B C

k2; 0,7 по С

k3; 1 по А; 0,35 по Н

A 2D

k4; 1 по С; 1 по D

C + D 3Е

k5; 2 по Е;

rA = –k1CB + k2CC0.7 – k3CACH0.35

rB = –2k1CB + 2k2CC0.7

rC = k1CB – k2CC0.7 – k4CCCD + k5CE2

rD = k3CACH0.35– k4CCCD + k5CE2

rE = k4CCCD – 3k5CE2

rH = 0

 

 

Кинетические константы (порядки по веществам и значения констант скорости для стадий) определены экспериментально. На схеме процесса над стрелками, соответствующими стадиям, показаны величины порядков по веществам. Не указанные порядки нулевые.

В процессе принимают участие 6 веществ: А и В являются исходными, С и D – промежуточными, Е – конечный продукт, Н – катализатор одной из стадий. Три химические реакции имеют пять стадий, три из которых являются прямыми, две – обратными.

Все реакции осуществляются гомогенно и проходят в замкнутой по веществу системе, что дает основания использовать для характеристики скорости выражения:

 

.

 

 

На основании изложенного выше запишем выражения для скоростей по каждому веществу-участнику. Всего получим 6 выражений по числу веществ. Для каждого из веществ скорость расходования или образования есть алгебраическая сумма скоростей всех стадий с участием данного вещества. Так, веществ А участвует в трех стадиях, в первой в качестве исходного вещества, во второй- как продукт, в третьей вновь как исходное вещество. Слагаемые скорости для первой и третьей стадий будут отрицательны, для второй стадии скорость имеет положительный знак. Значения скорости для каждой стадии по закону действующих масс являются произведением константы скорости соответствующей стадии и концентраций веществ в степенях, равных порядкам по веществам. С учетом этого выражения для скоростей по веществам будут следующими:

= –k1CB + k2CC0.7 – k3CACH0.35

= –2k1CB + 2k2CC0.7

= k1CB – k2CC0.7 – k4CCCD + k5CE2

= k3CACH0.35– k4CCCD + k5CE2

= 3k4CCCD – 3k5CE2

= 0.

 

Последняя скорость по веществу Н, катализатору третьей стадии, равна нулю. Масса катализатора не изменяется по ходу реакции.

В левой части всех уравнений присутствует производная концентрации вещества по времени, следовательно, уравнения кинетики являются дифференциальными. Концентрации в правой части уравнений в произвольный момент времени должны одновременно удовлетворять всем уравнениям, а это означает, что совокупность уравнений кинетики в математическом смысле есть система уравнений.

Модель химической кинетики является системой дифференциальных уравнений, решением которой является набор функций Ci = fi(t):

 

СА=f1(t)

СB=f2(t)

СC=f3(t)

СD=f4(t)

СE=f5(t)

СH=f6(t).

 

Для того, чтобы установить конкретный вид функций, необходимо решить систему дифференциальных уравнений, т.е. проинтегрировать систему уравнений кинетики. Интегрирование уравнений кинетики рассмотрим ниже на более простом примере, а после этого вновь вернемся к задаче, рассмотренной выше.

 

 

Дата публикации:2014-01-23

Просмотров:403

Вернуться в оглавление:

Комментария пока нет...


Имя* (по-русски):
Почта* (e-mail):Не публикуется
Ответить (до 1000 символов):







 

2012-2018 lekcion.ru. За поставленную ссылку спасибо.