Разделы

Авто
Бизнес
Болезни
Дом
Защита
Здоровье
Интернет
Компьютеры
Медицина
Науки
Обучение
Общество
Питание
Политика
Производство
Промышленность
Спорт
Техника
Экономика

Достоверность (адекватность) регрессионной модели

 

Обычно мерой ошибки регрессионной модели служит стандартное (среднеквадратичное) отклонение . Для процессов, подчиняющихся закону нормального распределения, приблизительно 66% точек находится в пределах одного стандартного отклонения от модели и 95% точек в пределах двух стандартных отклонений.

 

Стандартное отклонение – важный показатель для решения вопроса о достоверности модели. Большая ошибка может означать, что модель не соответствует процессу, который послужил источником экспериментальных данных. Однако большая ошибка модели может быть вызвана и другой причиной: большим разбросом данных измерений. В этом случае, возможно, потребуется взять большее количество выборок.

Для характеристики среднего разброса относительно линии регрессии применяют дисперсию адекватности:

; f– число степеней свободы.

 

Проверка значимости (качества предсказания) множественного уравнения регрессии можно осуществить на основе F-критерия Фишера. Вычисляют дисперсию среднего:

 

.

 

Вычисляют так называемую остаточную дисперсию (дисперсию адекватности):

 

.

 

Сравнивают с числом степеней свободы в числителе , в знаменателе . Считают, что уравнение регрессии предсказывает результаты опытов лучше среднего, если F достигает или превышает границу значимости при выбранном уровне значимости р (обычно принимают р = 1 – q = 5 % ). Другими словами, F – критерий Фишера показывает во сколько раз уравнение регрессии предсказывает результаты опытов лучше,чем среднее «у».

Дата публикации:2014-01-23

Просмотров:476

Вернуться в оглавление:

Комментария пока нет...


Имя* (по-русски):
Почта* (e-mail):Не публикуется
Ответить (до 1000 символов):







 

2012-2018 lekcion.ru. За поставленную ссылку спасибо.