Разделы

Авто
Бизнес
Болезни
Дом
Защита
Здоровье
Интернет
Компьютеры
Медицина
Науки
Обучение
Общество
Питание
Политика
Производство
Промышленность
Спорт
Техника
Экономика

Развитие женской половой системы 7 страница

Классификация костных тканей

Различают две разновидности костных тканей:

ретикулофиброзную (грубоволокнистую);

пластинчатую (параллельно волокнистую).

В ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретикулофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных). У взрослых людей они находятся в области прикрепления сухожилий к костям, а также на месте окостеневших швов черепа (стреловидный шов чешуи лобной кости).

При изучении костной ткани следует дифференцировать понятия костная ткань и кость.

3. Кость — это анатомический орган, основным структурным компонентом которого является костная ткань. Кость как орган состоит из следующих элементов:

костная ткань;

надкостница;

костный мозг (красный, желтый);

сосуды и нервы.

Надкостница (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение сходное с надхрящницей. В надкостнице выделяют наружный фиброзный и внутренний клеточный или камбиальный слои. Во внутреннем слое содержатся остеобласты и остеокласты. В надкостнице локализуются выраженная сосудистая сеть, из которой мелкие сосуды через прободающие каналы проникают в костную ткань. Красный костный мозг рассматривается как самостоятельный орган и относится к органам кроветворения и иммуногенеза.

Костная ткань в сформированных костях представлена только пластинчатой формой, однако в разных костях, в разном участке одной кости она имеет разное строение. В плоских костях и эпифизах трубчатых костей костные пластинки образуют перекладины (трабекулы), составляющие губчатое вещество кости. В диафизах трубчатых костей пластинки прилежат друг к другу и образуют компактное вещество. Однако и в компактном веществе одни пластинки образуют остеоны, другие пластинки являются общими.

Строение диафиза трубчатой кости

На поперечном срезе диафиза трубчатой кости различают следующие слои:

надкостница (периост);

наружный слой общих или генеральных пластин;

слой остеонов;

внутренний слой общих или генеральных пластин;

внутренняя фиброзная пластинкаэндост.

Наружные общие пластинки располагаются под надкостницей в несколько слоев, не образуя однако полные кольца. Между пластинками располагаются в лакунах остеоциты. Через наружные пластинки проходят прободающие каналы, через которые из надкостницы в костную ткань проникают прободающие волокна и сосуды. С помощью прободающих сосудов в костной ткани обеспечивается трофика, а прободающие волокна связывают надкостницу с костной тканью.

Слой остеонов состоит из двух компонентов: остеонов и вставочных пластин между ними. Остеон — является структурной единицей компактного вещества трубчатой кости. Каждый остеон состоит из:

5—20 концентрически наслоенных пластин;

канала остеона, в котором проходят сосуды (артериолы, капилляры, венулы).

Между каналами соседних остеонов имеются анастомозы. Остеоны составляют основную массу костной ткани диафиза трубчатой кости. Они располагаются продольно по трубчатой кости соответственно силовым и гравитационным линиям и обеспечивают выполнение опорной функции. При изменении направления силовых линий в результате перелома или искривления костей остеоны не несущие нагрузку разрушаются остеокластами. Однако такие остеоны разрушаются не полностью, а часть костных пластин остеона по его длине сохраняется и такие оставшиеся части остеонов называются вставочными пластинками. На протяжении постнатального онтогенеза постоянно происходит перестройка костной ткани — одни остеоны разрушаются (резорбируются), другие образуются и потому всегда между остеонами находятся вставочные пластины, как остатки предшествующих остеонов.

Внутренний слой общих пластинок имеет строение аналогичное наружному, но он менее выражен, а в области перехода диафиза в эпифизы общие пластинки продолжаются в трабекулы.

Эндост — тонкая соединительно-тканная пластинка, выстилающая полость канала диафиза. Слои в эндосте четко не выражены, но среди клеточных элементов содержатся остеобласты и остеокласты.

4. Развитие костной ткани и костей (остеогистогенез)

Все разновидности костной ткани развиваются из одного источника — из мезенхимы, но развитие разных костей осуществляется неодинаково. Различают два способа остеогистогенеза:

развитие непосредственно из мезенхимы — прямой остеогистогенез;

развитие из мезенхимы через стадию хряща — непрямой остеогистогенез.

Посредством прямого остеогистогенеза развиваются небольшое количество костей (покровные кости черепа). При этом вначале образуется ретикулофиброзная костная ткань, которая вскоре разрушается и замещается пластинчатой.

Прямой остеогистогенез протекает в IV стадии:

I стадия образования скелетогенных островков в мезенхиме;

II стадия образования оссеоидной ткани — органического матрикса;

III стадия минерализации (кальцификации) оссеоидной ткани и образование ретикулофиброзной костной ткани;

IV стадия преобразования ретикулофиброзной костной ткани в пластинчатую костную ткань.

Непрямой остеогистогенез начинается со 2-го месяца эмбриогенеза. Вначале в мезенхиме за счет деятельности хондробластов закладывается хрящевая модель будущей кости из гиалиновой хрящевой ткани, покрытая надхрящницей. Затем происходит замена хрящевой ткани костной, вначале в диафизах, а затем в эпифизах. Окостенение в диафизе осуществляется двумя способами: перихондрально или энхондрально.

Вначале в области диафиза хрящевой закладки кости из надхрящницы выселяются остеобласты и образуют ретикулофиброзную костную ткань, которая в виде манжетки охватывает по периферии хрящевую ткань. В результате этого надхрящница превращается в надкостницу. Такой способ образования костной ткани называется перихондральным. После образования костной манжетки нарушается трофика глубоких частей гиалинового хряща, в области диафиза, в результате чего здесь происходит отложение солей кальция — омеление хряща. Затем, под индуктивным влиянием обызвествленного хряща, в эту зону из надкостницы через отверстие в костной манжетке прорастают кровеносные сосуды, в адвентиции которых содержатся остеокласты и остеобласты. Остеокласты разрушают омелевший хрящ, за счет деятельности остеобластов, формируется пластинчатая костная ткань в виде первичных остеонов, которые характеризуются широким просветом (каналом) в центре и нечеткими границами между пластинками. Такой способ образования костной ткани в глубине хрящевой ткани и носит название энхондрального. Одновременно с энхондральным окостенением происходит перестройка грубоволокнистой костной манжетки в пластинчатую костную ткань, составляющую наружный слой генеральных пластин. В результате перихондрального и энхондрального окостенения хрящевая ткань в области диафиза замещается костной. При этом формируется полость диафиза, заполняющаяся вначале красным костным мозгом, сменяющимся затем на желтый костный мозг.

Эпифизы трубчатых костей и губчатые кости развиваются только энхондрально. Вначале в глубоких частях хрящевой ткани эпифиза отмечается омеление. Затем туда проникают сосуды с остекластами и остеобластами и за счет их деятельности происходит замена хрящевой ткани пластинчатой в виде трабекул. Периферическая часть хрящевой ткани сохраняется в виде суставного хряща. Между диафизом и эпифизом длительное время сохраняется хрящевая ткань — метаэпифизарная пластинка, за счет постоянного размножения клеток метафизарной пластинки происходит рост костей в длину. В метафизарной пластинке выделяют три зоны клеток:

пограничная зона;

зона столбчатых клеток;

зона пузырчатых клеток.

Примерно к 20-ти годам метаэпифизарные пластинки редуцируются, происходит синостозирование эпифизов и диафиза, после чего рост костей в длину прекращается. В процессе развития костей за счет деятельности остеобластов надкостницы происходит рост костей в толщину.

Регенерация костей после их повреждения и переломов осуществляется за счет деятельности остеобластов надкостницы. Перестройка костной ткани осуществляется постоянно на протяжении всего онтогенеза — одни остеоны или их части разрушаются, другие образуются.

Факторы, влияющие на процесс остеогистогенеза и состояние костной ткани:

содержание витаминов С, D, А. Недостаток в пище витамина С приводит к нарушению синтеза коллагеновых волокон и к распаду уже существующих, что проявляется хрупкостью и усиленной ломкостью костей. Недостаточное образование витамина D в коже приводит к нарушению кальцинации костной ткани и сопровождается недостаточностью костей, их гибкостью (при рахите). Избыточное содержание витамина А активирует деятельность остеокластов, что сопровождается резорбцией костной ткани;

содержание гормонов паращитовидной и щитовидной железы (паратина и кальцитонина), которые регулируют содержание кальция в костях и плазме крови. На состояние костной ткани оказывают влияние также половые гормоны;

искривление костей приводит к развитию пьезоэлектрического эффекта, стимуляции остекластов и резорбции костной ткани;

социальные факторы — питание, освещение и другие;

факторы окружающей среды — экология.

Возрастные изменения костей

С увеличением возраста изменяется соотношение органических и неорганических элементов костной ткани в сторону увеличения неорганических и уменьшения органических, что сопровождается повышенной ломкостью костей. Именно этим объясняется значительная большая частота переломов у пожилых людей.

ЛЕКЦИЯ 10. Мышечные ткани

1. Виды мышечной ткани

2. Поперечно-полосатая скелетная ткань

3. Гистогенез и регенерация мышечной ткани

4. Иннервация и кровоснабжение скелетных мышц

5. Сердечная поперечно-полосатая мышечная ткань

6. Гладкая мышечная ткань

7. Специальные гладкомышечные ткани

1. Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5—7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения при сокращении выделяется большое количество тепла, а, следовательно, мышечные ткани участвуют в терморегуляции организма. Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, по функциональным особенностям. Наконец, следует отметить, что любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна.

Классификация мышечных тканей

Гладкая (неисчерченная)— мезенхимная;

специальная — нейрального происхождения и эпидермального происхождения;

Поперечно-полосатая (исчерченная)— скелетная;

сердечная.

Как видно из представленной классификации мышечная ткань подразделяется по строению на две основные группы — гладкую и поперечно-полосатую. Каждая из двух групп в свою очередь подразделяется на разновидности, как по источникам происхождения, так и по строению и функциональным особенностям. Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения — миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная — из миотомов сомитов, сердечная — из висцерального листка спланхнотома.

Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка — миоцит; специальной мышечной ткани эпидермального происхождения — корзинчатый миоэпителиоцит; сердечной мышечной ткани — кардиомиоцит; скелетной мышечной ткани - мышечное волокно.

2. Поперечно-полосатая скелетная мышечная ткань

Структурно-функциональной единицей поперечно полосатой мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 мм до 40 мм (а по некоторым данным до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой — сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний — является типичной плазмолеммой, а наружный представляет собой тонкую соединительнотканную пластинку — базальную пластинку. В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки — миосателлиты. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

миосимпласта;

клеток миосателиттов;

базальной пластинки.

Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.

Клетки миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток — миобластов. Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 000) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов. Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся:

миофибриллы;

саркоплазматическая сеть;

канальцы Т-системы.

Миофибриллы — сократительные элементы миосимпласта — в большом количестве (до 1000—2000) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2—0,5 мкм. По своему строению миофибриллы неоднородны по протяжению и подразделяются на темные (анизотропные) или А-диски, и светлые (изотропные) или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Темные и светлые диски в свою очередь состоят из еще более тонких волоконец — протофибрилл или миофиламентов. Темные диски образованы более толстыми миофиламентами (10—12 нм), состоящими из белка миозина. Светлые диски образованы тонкими миофиламентами (5—7 нм), состоящими из белка актина. Посредине I-диска поперечно актиновым миофиламентам проходит темная полоска — телофрагма или Z-линия, посредине А-диска проходит менее выраженная М-линия или мезофрагма. Актиновые миофиламенты по средине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входит в А-диск между толстыми миофиламентами. При этом, вокруг одного миозинового филамента располагаются 6 актиновых. При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А—диск и в нем образуется светлая зона или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между двумя Z-линиями носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляется процесс сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами. Структурные элементы саркомера в расслабленном состоянии можно выразить формулой:

Z+1/2I+1/2A+M+1/2A+1/2I+Z

Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актин-миозиновых мостиков, посредством которых происходит втягивание актиновых миофиламентов в А-диски укорочение саркомера. Для развития этого процесса необходимы три условия:

наличие энергии в виде АТФ;

наличие ионов кальция;

наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях) в большом числе локализованных между миофибриллами. Выполнение двух последних условий осуществляется с помощью еще двух специализированных органелл —саркоплазматической сети и Т-канальцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами — L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы — в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети, выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы. Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они представляют собой трубчатые выпячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее — в области соединения актиновых и миозиновых миофиламентов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обуславливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.

Для взаимодействия актиновых и миозиновых миофиламентов и последующего сокращения кроме ионов кальция необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.

Процесс взаимодействия актиновых и миозиновых филаментов упрощенно можно представить в следующем виде. Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ, с образованием АДФ и энергии. Благодаря выделившейся энергии устанавливаются мостики между актином и миозином (а конкретнее, образуются мостики между головками белка миозина и определенными точками на актиновом филаменте)и за счет укорочения этих мостиков происходит подтягивание актиновых филаментов между миозиновыми. Затем эти связи распадаются (опять же с использованием энергии) и головки миозина образуют новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации ионов кальция вблизи миофиламентов и от содержания АТФ. После смерти организма АТФ в саркосомах не образуется, ее остатки расходуются на образование актин-миозиновых мостиков, а на распад уже не хватает, следствием чего наступает посмертное окоченение мышц, которое прекращается после аутолиза (распада) тканевых элементов.

При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоски и I-диски, а формула саркомера может быть выражена в следующем виде:

Z+1/2IA+M+1/2AI+Z

При частичном сокращении формулу саркомера можно представить в следующем виде:

Z+1/nI+1/nIA+1/2H+M+1/2H+1/nAJ+1/nI+Z

Одновременное содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом, на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в углубления складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров. Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых мышечных волокон, вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

В мышечной ткани различают два основных типа мышечных волокон, между которыми имеются промежуточные, отличающиеся между собой прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени — структурными особенностями.

Волокна I типакрасные мышечные волокна — характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что и придает им красный цвет), большим числом саркосом, высокой активностью в них сукцинатдегидрогеназы (СДГ), высокой активностью АТФ-азы медленного типа. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью.

Волокна II типабелые мышечные волокна — характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-базы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различными сочетаниями названных включений и разной активностью перечисленных ферментов.

Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов и нервов. Мышца — это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань. Поэтому не следует рассматривать как синонимы понятия мышечная ткань и мышца.

Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий и эпимизий, а также сухожилия. Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна. Коллагеновые и ретикулярные волокна эндомизия проникают в базальную пластинку мышечного волокна, тесно с ним связаны и передают силы сокращения волокна на точки скелета. Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артериоло-венулярные анастомозы).

Эпимизий или фасция окружает всю мышцу, способствует функционированию мышцы, как органа. Любая мышца содержит все типы мышечных волокон в различном количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают белые или переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации. Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое и наоборот приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

3. Гистогенез и регенерация мышечной ткани

Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки — миобласты, часть из которых выстраивается в виде цепочки в стык друг к другу. В области контактов миобластов цитолеммы исчезает и образуется симпластическое образование — миотрубка, в которой ядра в виде цепочки располагаются в середине, а по периферии начинают дифференцироваться из миофиламентов миофибриллы. К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной импульсации начинается перестройка мышечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают его центральную часть, из гладкой эндоплазматической сети развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении. Плазмолемма миосимпласта образует глубокие трубчатые впячивания — Т-канальцы. За счет деятельности зернистой эндоплазматической сети вначале миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.

Следует отметить, что при формировании миотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессах физиологической и репаративной регенерации. Установлено, что закладка поперечно-полосатых скелетных мышечных волокон (миогенез) происходит только в эмбриональный период. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивной тренировки не увеличивается.

Регенерация скелетной мышечной ткани

В мышечной, как в других тканях, различают два вида регенерации — физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличение числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что в конечном счете проявляется увеличением функциональной способности мышечного волокна. Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Дата публикации:2014-01-23

Просмотров:360

Вернуться в оглавление:

Комментария пока нет...


Имя* (по-русски):
Почта* (e-mail):Не публикуется
Ответить (до 1000 символов):







 

2012-2018 lekcion.ru. За поставленную ссылку спасибо.